Question #197811

Evaluate 𝐹 ∙ 𝑛𝑑𝑆, where 𝐹 = 4𝑥𝑧𝑖 − 𝑦 2 𝑗 + 𝑦𝑧𝑘 and S is the surface of the bounded by 𝑥 = 0, 𝑥 = 1, 𝑦 = 0, 𝑦 = 1, 𝑧 = 0, 𝑧 = 1.


1
Expert's answer
2021-05-26T14:09:05-0400

The Divergence Theorem


FdS=divFdV\iint\vec F\cdot d\vec S=\iiint \text{div}\vec F dVS\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ V \ \ \ \ \ \ \ \ \ \ \ \ \

The divergence of F\vec F is


divF=F\text{div}\vec F=\nabla\cdot \vec F

=(ix+jy+kz)(4xziy2j+yzk)=(i\dfrac{\partial}{\partial x}+j\dfrac{\partial}{\partial y}+k\dfrac{\partial}{\partial z})(4xzi− y^2j + yzk)

=x(4xz)+y(y2)+z(yz)=4z2y+y=\dfrac{\partial}{\partial x}(4xz)+\dfrac{\partial}{\partial y}(-y^2)+\dfrac{\partial}{\partial z}(yz)=4z-2y+y

=4zy=4z-y

Then


FdS=divFdV\iint\vec F\cdot d\vec S=\iiint \text{div}\vec F dVS\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ V \ \ \ \ \ \ \ \ \ \ \ \ \

=x=01y=01z=01(4zy)dzdydx=\displaystyle\int_{x=0}^{1}\displaystyle\int_{y=0}^{1}\displaystyle\int_{z=0}^{1}(4z-y)dzdydx

=x=01y=01[2z2yz]10dydx=\displaystyle\int_{x=0}^{1}\displaystyle\int_{y=0}^{1}[2z^2-yz]\begin{matrix} 1\\ 0 \end{matrix}dydx

=x=01y=01(2y)dydx=\displaystyle\int_{x=0}^{1}\displaystyle\int_{y=0}^{1}(2-y)dydx

=x=01[2yy22]10dx=x=0132dx=\displaystyle\int_{x=0}^{1}[2y-\dfrac{y^2}{2}]\begin{matrix} 1 \\ 0 \end{matrix}dx=\displaystyle\int_{x=0}^{1}\dfrac{3}{2}dx

=32[x]10=32=\dfrac{3}{2}[x]\begin{matrix} 1 \\ 0 \end{matrix}=\dfrac{3}{2}



FdS=32\iint\vec F\cdot d\vec S=\dfrac{3}{2}S\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS