Evaluate πΉ β πππ, where πΉ = 4π₯π§π β π¦ 2 π + π¦π§π and S is the surface of the bounded by π₯ = 0, π₯ = 1, π¦ = 0, π¦ = 1, π§ = 0, π§ = 1.
The Divergence Theorem
The divergence of "\\vec F" is
"=(i\\dfrac{\\partial}{\\partial x}+j\\dfrac{\\partial}{\\partial y}+k\\dfrac{\\partial}{\\partial z})(4xzi\u2212 y^2j + yzk)"
"=\\dfrac{\\partial}{\\partial x}(4xz)+\\dfrac{\\partial}{\\partial y}(-y^2)+\\dfrac{\\partial}{\\partial z}(yz)=4z-2y+y"
"=4z-y"
Then
"=\\displaystyle\\int_{x=0}^{1}\\displaystyle\\int_{y=0}^{1}\\displaystyle\\int_{z=0}^{1}(4z-y)dzdydx"
"=\\displaystyle\\int_{x=0}^{1}\\displaystyle\\int_{y=0}^{1}[2z^2-yz]\\begin{matrix}\n 1\\\\\n 0\n\\end{matrix}dydx"
"=\\displaystyle\\int_{x=0}^{1}\\displaystyle\\int_{y=0}^{1}(2-y)dydx"
"=\\displaystyle\\int_{x=0}^{1}[2y-\\dfrac{y^2}{2}]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}dx=\\displaystyle\\int_{x=0}^{1}\\dfrac{3}{2}dx"
"=\\dfrac{3}{2}[x]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=\\dfrac{3}{2}"
Comments
Leave a comment