Find fx(0,0) and fx(x,y), where (x,y) not = (0,0) for the function f:R^2 is to R defined by
F(x,y)={xy^3/x^2+y^2 if (x,y) is not= (0,0) and (x,y)=(0,0).
Is Fx continuous at (0,0)? Justify your answer.
"=\\lim\\limits_{h\\to0}\\dfrac{\\dfrac{0\\cdot(h)^3}{(0)^2+h^2}-0}{h}=0"
"=\\lim\\limits_{h\\to0}\\dfrac{\\dfrac{h\\cdot(0)^3}{h^2+(0)^2}-0}{h}=0"
If "(x, y)\\not=(0, 0)"
Let "x=r\\cos\\theta, y=r\\sin \\theta"
"=\\lim\\limits_{r\\to0}\\dfrac{r^3 \\sin^3\\theta(r^2 \\sin^2\\theta-r^2 \\cos^2\\theta)}{r^4}"
"=\\lim\\limits_{r\\to0}\\dfrac{r\\cos\\theta (r\\sin\\theta)^3}{(r\\cos\\theta)^2+(r\\sin\\theta)^2}"
"=\\lim\\limits_{r\\to0}r\\sin^3\\theta(\\sin^2\\theta- \\cos^2\\theta)=0=f_x(0, 0)"
The function "f_x(x, y)" is continuous at "(0, 0)."
Comments
Leave a comment