Answer to Question #197456 in Calculus for Fatima

Question #197456

Evaluate the iterated Integral  in terms of e. 


1
Expert's answer
2021-05-24T16:08:30-0400

For example:

RexydA, R=[2,4]×[1,2]\displaystyle \iint_Re^{xy}dA,\ R=[2,4]\times [1,2]


Then:

RexydA=2412exydydx=24(exy12)dx=\displaystyle \iint_Re^{xy}dA=\displaystyle\int^4_2\int^2_1e^{xy}dydx=\displaystyle\int^4_2(e^{xy}|^2_1)dx=

24(e2xex)dx=(e2x/2ex)24=e8/2e4e4/2+e2=e8/23e4/2+e2\displaystyle\int^4_2(e^{2x}-e^x)dx=(e^{2x}/2-e^x)|^4_2=e^8/2-e^4-e^4/2+e^2=e^8/2-3e^4/2+e^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment