Evaluate the iterated Integral in terms of e.
For example:
∬RexydA, R=[2,4]×[1,2]\displaystyle \iint_Re^{xy}dA,\ R=[2,4]\times [1,2]∬RexydA, R=[2,4]×[1,2]
Then:
∬RexydA=∫24∫12exydydx=∫24(exy∣12)dx=\displaystyle \iint_Re^{xy}dA=\displaystyle\int^4_2\int^2_1e^{xy}dydx=\displaystyle\int^4_2(e^{xy}|^2_1)dx=∬RexydA=∫24∫12exydydx=∫24(exy∣12)dx=
∫24(e2x−ex)dx=(e2x/2−ex)∣24=e8/2−e4−e4/2+e2=e8/2−3e4/2+e2\displaystyle\int^4_2(e^{2x}-e^x)dx=(e^{2x}/2-e^x)|^4_2=e^8/2-e^4-e^4/2+e^2=e^8/2-3e^4/2+e^2∫24(e2x−ex)dx=(e2x/2−ex)∣24=e8/2−e4−e4/2+e2=e8/2−3e4/2+e2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment