Find the limit of {n^3/(n^4+1)} as n →∞
limn→∞n3n4+1=limn→∞1n+1n3=limn→∞1n+0=limn→∞1n=0\displaystyle \begin{aligned} \lim_{n\to\infty} \frac{n^3}{n^4+1} &= \lim_{n\to\infty} \frac{1}{n + \frac{1}{n^3}} \\&= \lim_{n\to\infty} \frac{1}{n + 0} \\&= \lim_{n\to\infty} \frac{1}{n} = 0 \end{aligned}n→∞limn4+1n3=n→∞limn+n311=n→∞limn+01=n→∞limn1=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment