Β Verify Stokesβ theorem for π΄ = 2π₯ β π¦ π β π¦π§2 π β π¦2π§π, where S is the upper half of the sphere π₯2+ π¦2 + π§2 = 1 and C is its boundary.
"\\int_C\\vec F\\cdot \\vec{dr}=\\int\\int_S curl \\vec F\\cdot \\hat ndS\\ \\ (Stoke's\\ Theorem)"
where C is the circle: "x^2+y^2=1,\\ z=0\\ \\ (xy-plane)"
i.e. "x=cost,\\ y=sint,\\ z=0"
"r=x\\vec i+y\\vec j\\ where\\ \\ 0\\leq \\theta\\leq 2\\pi\\\\\\vec{dr}=dx\\vec i+dy\\vec j"
where,
"\\vec F=(2x-y)\\vec i-yz^2\\vec j-y^2z\\vec k\\\\\\therefore\\vec F\\cdot \\vec{dr}=(2x-y)dx\\ (since\\ z=0 )"
LHS "= \\int_C \\vec F\\cdot \\vec{dr}=\\int_C(2x-y)dx"
"=\\int_0^{2\\pi}(2cost-sint)(-sint)dt\\\\\\ \\\\=\\int_0^{2\\pi}(sin^2t-2costsint)dt\\\\\\ \\\\=\\int_0^{2\\pi}\\{\\frac{1}{2}(1-cos2t)-sin2t\\}dt\\\\\\ \\\\=[\\dfrac{t}{2}-\\dfrac{sin2t}{4}-\\dfrac{cos2t}{2}]_o^{2\\pi}\\\\\\ \\\\=(\\dfrac{1}{2}-\\dfrac{1}{2})+(\\pi-0)\\\\\\ \\\\=\\pi"
Hence, "\\vec F\\cdot \\vec{dr}=\\pi\\ \\ \\ .....(1)"
Also,
"curl \\ \\ \\vec F=\\triangledown \\times \\vec F"
"= \\begin{vmatrix}\n \\vec i & \\vec j&\\vec k \\\\\n \\frac{\\delta}{\\delta x} & \\frac{\\delta}{\\delta y}&\\frac{\\delta}{\\delta z}\\\\ 2x-y&-yz^2&-y^2z\n\\end{vmatrix}\\\\\\ \\\\=\\vec i(-2yz+2yz)-\\vec j (0)+\\vec k (0+1)\\\\=\\vec k"
"\\therefore \\vec {dS}=\\hat n dS\\\\=dydz\\ i+dzdx\\ j+dxdy\\ k"
Hence,
"RHS\\ =\\ \\int\\int_S\\ curl\\ \\vec F\\cdot \\hat {n}dS=\\int\\int dxdy=\\pi\\ \\ .....(2)"
"Since,\\ \\ \\int\\int dxdy" represent the area of the circle "x^2+y^2=1" which is "\\pi"
Thus, from (1) and (2) we conclude that the theorem is verified.
Comments
Leave a comment