Question #190416

lim (x.cosx- sinx / x^2.sinx)

x→0


1
Expert's answer
2021-05-10T13:14:41-0400

Limx0xcosxsinxx2sinx(00form)​By L’Hospital’s rule,=Limx0xcosxsinxx2(sinxx)x=Limx0xcosxsinxx3(limsinxx=1)Differentiate numerator and denominator=Limx0xsinx+cosxcosx3x2=Limx0xsinx3x2=Limx0x3x(sinxx)=Limx013(sinxx)(limsinxx=1)=13Lim_{x→0}​ \frac{xcosx−sinx}{x^2 sinx}\hspace{1.3cm}(\frac{0}{0} form)\newline​ \text{By L'Hospital's rule,}\newline =Lim_{x→0}​ \frac{xcosx−sinx}{x^2 (\frac{sinx}{x})x}\newline =Lim_{x→0}​ \frac{xcosx−sinx}{x^3}\hspace{1cm}(lim\frac{sinx}{x}=1)\newline \text{Differentiate numerator and denominator}\newline =Lim_{x→0}​ \frac{-xsinx+cosx−cosx}{3x^2}\newline =Lim_{x→0}​ \frac{-xsinx}{3x^2}\newline =Lim_{x→0}​ \frac{-x}{3x}(\frac{sinx}{x})\newline =Lim_{x→0}​ \frac{-1}{3}(\frac{sinx}{x})\hspace{1cm}(lim\frac{sinx}{x}=1)\newline =\frac{-1}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS