Find the second Taylor polynomial of
f(x,y) = xy+3y^2-2 at (1,2)
Second Taylor degree polynomial can be written as -
"Q(x,y)" = "L(x,y)+\\dfrac{fxx_{(1},_{2)}}{2}{(x-1)}^{2}+ {fxy_{(1},_{2)}}{(x-1)}{(y-2)}+\\dfrac{fyy_{(1},_{2)}}{2}(y-2)^{2}.......A)"
"L(X,Y)=f(1,2)\\ +fx(1,2)(x-1)+fy(1,2)(y-2).........B)"
"f(x,y)=" "xy\\ +3y^{2}" "-2"
"f(1,2)=2" .......1)
"fx(1,2)=y=2" ......2)
"fy(1,2)\\ =x+6y=13" .........3)
Putting the value of 1, 2 and 3 in equation B)...
"L(X,Y)=2+2(x-1)\\ +13(y-2)=2x\\ +13y\\ -26"
"fxx(1,2)=0" ........4)
"fyy(1,2)=6" ..........5)
"fxy(1,2)=" "x+7y=15..........6)"
Putting 4, 5 and 6 and equation B in equation A , we get-
"Q(x,y)=2x\\ +13y\\ -26\\ + 15(x-1)(x-2)\\ +3(y-2)^{2}" which is required second taylor polynomial.
Comments
Leave a comment