Second Taylor degree polynomial can be written as -
Q(x,y) = L(x,y)+2fxx(1,2)(x−1)2+fxy(1,2)(x−1)(y−2)+2fyy(1,2)(y−2)2.......A)
L(X,Y)=f(1,2) +fx(1,2)(x−1)+fy(1,2)(y−2).........B)
f(x,y)= xy +3y2 −2
f(1,2)=2 .......1)
fx(1,2)=y=2 ......2)
fy(1,2) =x+6y=13 .........3)
Putting the value of 1, 2 and 3 in equation B)...
L(X,Y)=2+2(x−1) +13(y−2)=2x +13y −26
fxx(1,2)=0 ........4)
fyy(1,2)=6 ..........5)
fxy(1,2)= x+7y=15..........6)
Putting 4, 5 and 6 and equation B in equation A , we get-
Q(x,y)=2x +13y −26 +15(x−1)(x−2) +3(y−2)2 which is required second taylor polynomial.
Comments
Leave a comment