Answer to Question #190415 in Calculus for Nikhil Rawat

Question #190415

Find the second Taylor polynomial of

f(x,y) = xy+3y^2-2 at (1,2)


1
Expert's answer
2021-05-11T08:58:56-0400

Second Taylor degree polynomial can be written as -


Q(x,y)Q(x,y) = L(x,y)+fxx(1,2)2(x1)2+fxy(1,2)(x1)(y2)+fyy(1,2)2(y2)2.......A)L(x,y)+\dfrac{fxx_{(1},_{2)}}{2}{(x-1)}^{2}+ {fxy_{(1},_{2)}}{(x-1)}{(y-2)}+\dfrac{fyy_{(1},_{2)}}{2}(y-2)^{2}.......A)


L(X,Y)=f(1,2) +fx(1,2)(x1)+fy(1,2)(y2).........B)L(X,Y)=f(1,2)\ +fx(1,2)(x-1)+fy(1,2)(y-2).........B)


f(x,y)=f(x,y)= xy +3y2xy\ +3y^{2} 2-2



f(1,2)=2f(1,2)=2 .......1)


fx(1,2)=y=2fx(1,2)=y=2 ......2)


fy(1,2) =x+6y=13fy(1,2)\ =x+6y=13 .........3)


Putting the value of 1, 2 and 3 in equation B)...


L(X,Y)=2+2(x1) +13(y2)=2x +13y 26L(X,Y)=2+2(x-1)\ +13(y-2)=2x\ +13y\ -26



fxx(1,2)=0fxx(1,2)=0 ........4)


fyy(1,2)=6fyy(1,2)=6 ..........5)


fxy(1,2)=fxy(1,2)= x+7y=15..........6)x+7y=15..........6)



Putting 4, 5 and 6 and equation B in equation A , we get-



Q(x,y)=2x +13y 26 +15(x1)(x2) +3(y2)2Q(x,y)=2x\ +13y\ -26\ + 15(x-1)(x-2)\ +3(y-2)^{2} which is required second taylor polynomial.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment