Answer to Question #190057 in Calculus for devy

Question #190057

Consider the R 2 − R function f defined by f(x,y) = x- 2y.

Prove from first principle that

lim f (x, y) = 0.

(x,y)→(2,1)



1
Expert's answer
2021-05-07T14:18:30-0400

Given function is-

f(x,y)=x2yf(x,y)=x-2y


Let >0\forall \in >0 be given


Now consider ,

    f(x,y)f(2,1)=x2y0=x2y|f(x,y)-f(2,1)| =|x-2y-0|=|x-2y|


x22(y1)x22(y1)x2+2+y1\Rightarrow |x-2-2(y-1)| \Rightarrow |x-2-2(y-1)|\le |x-2|+2+y-1|


If we choose x2<,y1<|x-2|<\in, |y-1|<\in


then x22(y1)<+2=3|x-2'-2(y-1)|<\in+2\in=3\in


   x22(y1)<3=|x-2-2(y-1)|<3\in=\in


So, >0,>0\in>0, \exist \in >0 such that


for x2<,y1<f(x,y)0<|x-2|<\in, |y-1|<\in \Rightarrow f(x,y)-0|<\in


i.e. lim(x,y)(2,1)f(x,y)=0lim_{(x,y)\to (2,1)}f(x,y)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment