Given function is-
f(x,y)=x−2y
Let ∀∈>0 be given
Now consider ,
∣f(x,y)−f(2,1)∣=∣x−2y−0∣=∣x−2y∣
⇒∣x−2−2(y−1)∣⇒∣x−2−2(y−1)∣≤∣x−2∣+2+y−1∣
If we choose ∣x−2∣<∈,∣y−1∣<∈
then ∣x−2′−2(y−1)∣<∈+2∈=3∈
∣x−2−2(y−1)∣<3∈=∈
So, ∈>0,∃∈>0 such that
for ∣x−2∣<∈,∣y−1∣<∈⇒f(x,y)−0∣<∈
i.e. lim(x,y)→(2,1)f(x,y)=0
Comments
Leave a comment