Consider the R 2 − R function f defined by f(x,y) = x- 2y.
Prove from first principle that
lim f (x, y) = 0.
(x,y)→(2,1)
Given function is-
"f(x,y)=x-2y"
Let "\\forall \\in >0" be given
Now consider ,
"|f(x,y)-f(2,1)|\n\n =|x-2y-0|=|x-2y|"
"\\Rightarrow |x-2-2(y-1)|\n\n\n\n\\Rightarrow |x-2-2(y-1)|\\le |x-2|+2+y-1|"
If we choose "|x-2|<\\in, |y-1|<\\in"
then "|x-2'-2(y-1)|<\\in+2\\in=3\\in"
"|x-2-2(y-1)|<3\\in=\\in"
So, "\\in>0, \\exist \\in >0" such that
for "|x-2|<\\in, |y-1|<\\in \\Rightarrow f(x,y)-0|<\\in"
i.e. "lim_{(x,y)\\to (2,1)}f(x,y)=0"
Comments
Leave a comment