Find the sum of the infinite series ∑_(n=1)^(+∞)▒1/(k^2+5k+6)
Given series is-
"\\sum_{k=1}^{\\infty}\\dfrac{1}{k^2+5k+6}"
"=\\sum_{k=1}^{\\infty} \\dfrac{1}{(k+3)(k+2)}\n\n\n\n \\\\[9pt]=\\sum_{k=1}^{\\infty} (\\dfrac{1}{(k+2)}-\\dfrac{1}{(k+3)}\n\n\n\n\\\\[9pt]=(\\dfrac{1}{3}-\\dfrac{1}{4})+\\dfrac{1}{4}-\\dfrac{1}{5})+\\dfrac{1}{5}-\\dfrac{1}{6}+.....\n\n\n\n\\\\[9pt] =(\\dfrac{1}{3}+\\dfrac{1}{4}+\\dfrac{1}{5}+.....)-(\\dfrac{1}{4}+\\dfrac{1}{5}+.....)\n\n\n\n\\\\[9pt]=\\dfrac{1}{3}"
Comments
Leave a comment