Evaluate the integral ∫▒〖sin〗^3 x 〖cos〗^4 xdx
∫sin3xcos4xdx=∫−cos4x(cos2x−1)sinxdx\int sin^3xcos^4xdx=\int -cos^4x(cos^2x-1)sinxdx∫sin3xcos4xdx=∫−cos4x(cos2x−1)sinxdx
u=cosx
du/dx=-sinxdx=-du/sinx
∫−cos4x(cos2x−1)sinxdx=∫u4(u2−1)du=∫(u6−u4)du=∫u6du−∫u4du=u7/7−u5/5=cos7x/7−cos5x/5+C\int -cos^4x(cos^2x-1)sinxdx=\int u^4(u^2-1)du=\int (u^6-u^4)du=\int u^6du-\int u^4du=u^7/7-u^5/5=cos^7x/7-cos^5x/5+C∫−cos4x(cos2x−1)sinxdx=∫u4(u2−1)du=∫(u6−u4)du=∫u6du−∫u4du=u7/7−u5/5=cos7x/7−cos5x/5+C
Answer:∫sin3xcos4xdx=cos7x/7−cos5x/5+C\int sin^3xcos^4xdx=cos^7x/7-cos^5x/5+C∫sin3xcos4xdx=cos7x/7−cos5x/5+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments