Question #189876

Evaluate the integral ∫▒〖sin〗^3 x 〖cos〗^4 xdx 


1
Expert's answer
2021-05-07T14:13:48-0400

sin3xcos4xdx=cos4x(cos2x1)sinxdx\int sin^3xcos^4xdx=\int -cos^4x(cos^2x-1)sinxdx

u=cosx

du/dx=-sinxdx=-du/sinx

cos4x(cos2x1)sinxdx=u4(u21)du=(u6u4)du=u6duu4du=u7/7u5/5=cos7x/7cos5x/5+C\int -cos^4x(cos^2x-1)sinxdx=\int u^4(u^2-1)du=\int (u^6-u^4)du=\int u^6du-\int u^4du=u^7/7-u^5/5=cos^7x/7-cos^5x/5+C

Answer:sin3xcos4xdx=cos7x/7cos5x/5+C\int sin^3xcos^4xdx=cos^7x/7-cos^5x/5+C





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS