The function,f is defined by F(x,y)=x^2+xy+y^2 is integrable over [2,1]×[1,2]. True or false with full explanation
We have given the function,
"F(x,y)=x^2+xy+y^2" over [2,1]×[1,2]
x varies from 2 to 1.
y varies from 1 to 2.
Integrating the given function,
"\\int_{1}^{2} \\int_{2}^{1} (x^2+xy+y^2)dxdy\\\\"
"\\int_{1}^{2}[\\dfrac{x^3}{3}+\\dfrac{x^2y}{2}+xy^2]_{2}^{1}dy"
"= \\int_{1}^{2}[-\\dfrac{7}{3}+\\dfrac{5y}{2}-y^2]dy"
"= [-\\dfrac{7y}{3}+\\dfrac{5y^2}{4}- \\dfrac{y^3}{3}]_{1}^{2}"
"= -\\dfrac{87}{12}"
Hence, the given function is Integrable over [2,1]×[1,2].
Comments
Leave a comment