Find the area of the curve r^2 = 3-4cos^2∅, symmetrical to origin and Ox.
Given, the curve r2 = 3-4cos2∅, symmetrical to origin.
Area of region above the origin=
"=\\frac{1}{2}\\int_{\\frac{\\pi}{6}}^{\\frac{5\\pi}{6}} r^2 d\\varnothing\\newline\n=\\frac{1}{2}\\int_{\\frac{\\pi}{6}}^{\\frac{5\\pi}{6}} 3-4cos^2\\varnothing d\\varnothing\\newline\n=\\frac{1}{2}\\int_{\\frac{\\pi}{6}}^{\\frac{5\\pi}{6}} 3-4\\frac{1-cos2\\varnothing}{2} d\\varnothing\\newline\n=\\frac{1}{2}\\int_{\\frac{\\pi}{6}}^{\\frac{5\\pi}{6}} 1+cos2\\varnothing d\\varnothing\\newline\n=\\frac{1}{2}[ \\varnothing + \\frac{sin2\\varnothing}{2} ]_{\\frac{\\pi}{6}}^{\\frac{5\\pi}{6}}\\newline\n=\\frac{1}{2}[ \\frac{5\\pi}{6} -\\frac{\\sqrt3}{4} -{\\frac{\\pi}{6}}-\\frac{\\sqrt3}{4}]\\newline\n=\\frac{1}{2}[ \\frac{2\\pi}{3} -\\frac{\\sqrt3}{2}]\\newline\n=0.614 \\text{square units}"
Total area=2×0.614=1.228 square units.
Comments
Leave a comment