(a) Total cost function-
C′(x)=6−0.001x+x4000
C(x)=∫C′(x)dx
=∫(6−0.001x+x4000)dx=6x−30.001x3+4000lnx
(b) Revenue function-
P(X)=R(X)−C(X)4000+194x−0.149x2=R(x)−6x−0.01x2−4000R(x)=200x+0.5x2
(c) The Quantity which provides maximise the profit-
P(X)=−4000+194x−0.149x2
P′(X)=194−0.98x
Putting P′(X)=0⇒194−0.98x=0⇒x=651units
(d) The maximum profit-
P(651)=−4000+194(651)−0.149(651)2
=−4000+126294−63146.35=RM 59147.65
(e) The price at maximum price
R(x)=P(x)x
Sunstitute at x=651
R=(200−0.15(0.651)= RM 102.35 per unit
Comments