Let us determine the points of intersection of y=x2 and y=2x+3 :
x2=2x+3,x2−2x−3=0,D=(−2)2−4⋅1⋅(−3)=16=42,x1,2=22±4=3or−1.
So we need to evaluate the integral equal to the difference of areas under the graphs when x∈[−1;3]
S=−1∫3(2x+3−x2)dx=(x2+3x−3x3)∣∣−13,S=(32+3⋅3−333)−((−1)2+3⋅(−1)−3(−1)3),S=332.
Comments
Leave a comment