Answer to Question #188470 in Calculus for Jethro

Question #188470

Determine the area of the region bounded by y = x² and y = 2x + 3


1
Expert's answer
2021-05-07T11:58:28-0400

Let us determine the points of intersection of y=x2y=x^2 and y=2x+3y=2x+3 :

x2=2x+3,x22x3=0,D=(2)241(3)=16=42,x1,2=2±42=3   or  1.x^2 = 2x + 3, \\ x^2 - 2x-3 = 0, \\ D = (-2)^2 - 4\cdot 1\cdot (-3) = 16=4^2, \\ x_{1,2} = \dfrac{2\pm 4}{2} = 3\,\,\,\mathrm{or} \,\, -1.

So we need to evaluate the integral equal to the difference of areas under the graphs when x[1;3]x\in[-1;3]

S=13(2x+3x2)dx=(x2+3xx33)13,S=(32+33333)((1)2+3(1)(1)33),S=323.S=\int\limits_{-1}^3 \left(2x+3 - x^2 \right)\,dx = \left( x^2 + 3x - \dfrac{x^3}{3}\right) \Big|_{-1}^3 \,, \\ S = \left(3^2 + 3\cdot3 - \dfrac{3^3}{3} \right) - \left( (-1)^2 + 3\cdot(-1) - \dfrac{(-1)^3}{3}\right), \\ S = \dfrac{32}{3}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment