1-Calculate the third-degree Taylor polynomial about x0=0 for f (x) =(1+ x)1/2
2-Use the polynomial in part (i) to approximate (1.1)^1/2 and find a bound for the
error involved.
3.Use the polynomial in part (i) to approximate integration[0,0.1]
(1 +x)1/2dx .
1.
"f(x)=(1+x)^{\\frac{1}{2}} \\newline\nf'(x)=\\frac{1}{2}(1+x)^{-\\frac{1}{2}}\\newline\nf''(x)=-\\frac{1}{4}(1+x)^{-\\frac{3}{2}}\\newline\nf'''(x)=\\frac{3}{8}(1+x)^{-\\frac{5}{2}}\\newline\nTaylor series,\\newline\nf(x)=\\sum_{n=0}^{3}\\frac{f^n(x_{0})}{n!}(x-x_{0})^n\\newline\nf(x)=f(x_{0})+\\frac{f'(x_{0})}{1!}(x-x_{0})+\\frac{f''(x_{0})}{2!}(x-x_{0})^2+\\frac{f'''(x_{0})}{3!}(x-x_{0})^3\\newline\nf(x)=f(0)+\\frac{f'(0)}{1!}(x-0)+\\frac{f''(0)}{2!}(x-0)^2+\\frac{f'''(0)}{3!}(x-0)^3\\newline\nf(x)=f(0)+\\frac{f'(0)}{1!}(0)+\\frac{f''(0)}{2!}(0)^2+\\frac{f'''(0)}{3!}(0)^3\\newline\nf(x)=1+\\frac{1}{2}x-\\frac{1}{8}x^2+\\frac{3}{48}x^3"
2.
Given, (1.1)1/2.
Actual value of (1.1)1/2=1.048808848. (9 decimal places)
"f(0.1)=(1.1)^{\\frac{1}{2}} \\newline\nf(0.1)=1+\\frac{1}{2}(0.1)-\\frac{1}{8}(0.1)^2+\\frac{3}{48}(0.1)^3\\newline\nf(0.1)=1.048812500"
Error="\\begin{vmatrix}\n approx -exact \\\\\n\n\\end{vmatrix}\n=\\begin{vmatrix}\n 1.0488125 -1.048808848 \\\\\n\n\\end{vmatrix}\n=0.000003652"
3.
Approximate "\\int_{0}^{0.1}(1+x)^\\frac{1}{2}dx" ,
"\\int_{0}^{0.1}f(x)dx=\\int_{0}^{0.1}(1+\\frac{1}{2}x-\\frac{1}{8}x^2+\\frac{3}{48}x^3)dx=0.102459896"
Comments
Leave a comment