1.
f ( x ) = ( 1 + x ) 1 2 f ′ ( x ) = 1 2 ( 1 + x ) − 1 2 f ′ ′ ( x ) = − 1 4 ( 1 + x ) − 3 2 f ′ ′ ′ ( x ) = 3 8 ( 1 + x ) − 5 2 T a y l o r s e r i e s , f ( x ) = ∑ n = 0 3 f n ( x 0 ) n ! ( x − x 0 ) n f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + f ′ ′ ′ ( x 0 ) 3 ! ( x − x 0 ) 3 f ( x ) = f ( 0 ) + f ′ ( 0 ) 1 ! ( x − 0 ) + f ′ ′ ( 0 ) 2 ! ( x − 0 ) 2 + f ′ ′ ′ ( 0 ) 3 ! ( x − 0 ) 3 f ( x ) = f ( 0 ) + f ′ ( 0 ) 1 ! ( 0 ) + f ′ ′ ( 0 ) 2 ! ( 0 ) 2 + f ′ ′ ′ ( 0 ) 3 ! ( 0 ) 3 f ( x ) = 1 + 1 2 x − 1 8 x 2 + 3 48 x 3 f(x)=(1+x)^{\frac{1}{2}} \newline
f'(x)=\frac{1}{2}(1+x)^{-\frac{1}{2}}\newline
f''(x)=-\frac{1}{4}(1+x)^{-\frac{3}{2}}\newline
f'''(x)=\frac{3}{8}(1+x)^{-\frac{5}{2}}\newline
Taylor series,\newline
f(x)=\sum_{n=0}^{3}\frac{f^n(x_{0})}{n!}(x-x_{0})^n\newline
f(x)=f(x_{0})+\frac{f'(x_{0})}{1!}(x-x_{0})+\frac{f''(x_{0})}{2!}(x-x_{0})^2+\frac{f'''(x_{0})}{3!}(x-x_{0})^3\newline
f(x)=f(0)+\frac{f'(0)}{1!}(x-0)+\frac{f''(0)}{2!}(x-0)^2+\frac{f'''(0)}{3!}(x-0)^3\newline
f(x)=f(0)+\frac{f'(0)}{1!}(0)+\frac{f''(0)}{2!}(0)^2+\frac{f'''(0)}{3!}(0)^3\newline
f(x)=1+\frac{1}{2}x-\frac{1}{8}x^2+\frac{3}{48}x^3 f ( x ) = ( 1 + x ) 2 1 f ′ ( x ) = 2 1 ( 1 + x ) − 2 1 f ′′ ( x ) = − 4 1 ( 1 + x ) − 2 3 f ′′′ ( x ) = 8 3 ( 1 + x ) − 2 5 T a y l orser i es , f ( x ) = ∑ n = 0 3 n ! f n ( x 0 ) ( x − x 0 ) n f ( x ) = f ( x 0 ) + 1 ! f ′ ( x 0 ) ( x − x 0 ) + 2 ! f ′′ ( x 0 ) ( x − x 0 ) 2 + 3 ! f ′′′ ( x 0 ) ( x − x 0 ) 3 f ( x ) = f ( 0 ) + 1 ! f ′ ( 0 ) ( x − 0 ) + 2 ! f ′′ ( 0 ) ( x − 0 ) 2 + 3 ! f ′′′ ( 0 ) ( x − 0 ) 3 f ( x ) = f ( 0 ) + 1 ! f ′ ( 0 ) ( 0 ) + 2 ! f ′′ ( 0 ) ( 0 ) 2 + 3 ! f ′′′ ( 0 ) ( 0 ) 3 f ( x ) = 1 + 2 1 x − 8 1 x 2 + 48 3 x 3
2.
Given, (1.1)1/2 .
Actual value of (1.1)1/2 =1.048808848. (9 decimal places)
f ( 0.1 ) = ( 1.1 ) 1 2 f ( 0.1 ) = 1 + 1 2 ( 0.1 ) − 1 8 ( 0.1 ) 2 + 3 48 ( 0.1 ) 3 f ( 0.1 ) = 1.048812500 f(0.1)=(1.1)^{\frac{1}{2}} \newline
f(0.1)=1+\frac{1}{2}(0.1)-\frac{1}{8}(0.1)^2+\frac{3}{48}(0.1)^3\newline
f(0.1)=1.048812500 f ( 0.1 ) = ( 1.1 ) 2 1 f ( 0.1 ) = 1 + 2 1 ( 0.1 ) − 8 1 ( 0.1 ) 2 + 48 3 ( 0.1 ) 3 f ( 0.1 ) = 1.048812500
Error=∣ a p p r o x − e x a c t ∣ = ∣ 1.0488125 − 1.048808848 ∣ = 0.000003652 \begin{vmatrix}
approx -exact \\
\end{vmatrix}
=\begin{vmatrix}
1.0488125 -1.048808848 \\
\end{vmatrix}
=0.000003652 ∣ ∣ a pp ro x − e x a c t ∣ ∣ = ∣ ∣ 1.0488125 − 1.048808848 ∣ ∣ = 0.000003652
3.
Approximate ∫ 0 0.1 ( 1 + x ) 1 2 d x \int_{0}^{0.1}(1+x)^\frac{1}{2}dx ∫ 0 0.1 ( 1 + x ) 2 1 d x ,
∫ 0 0.1 f ( x ) d x = ∫ 0 0.1 ( 1 + 1 2 x − 1 8 x 2 + 3 48 x 3 ) d x = 0.102459896 \int_{0}^{0.1}f(x)dx=\int_{0}^{0.1}(1+\frac{1}{2}x-\frac{1}{8}x^2+\frac{3}{48}x^3)dx=0.102459896 ∫ 0 0.1 f ( x ) d x = ∫ 0 0.1 ( 1 + 2 1 x − 8 1 x 2 + 48 3 x 3 ) d x = 0.102459896
Comments