(1) Given curve is-
y=2x−1
⇒y′(x)=22x−12⇒y′(x)=2(5)−11=91=31
Also, at x=5,y=2(5)−1=10−1=9=3
So Tangent Equation is-
(y−3)=y′(x)(x−5)⇒y−3=3x−5⇒3y−9=x−5⇒3y−x−4=0
(2) Given curve is-
g(x)=x+1x
g′(x)=(x+1)2(x+1)−x⇒g′(x)(2,32)=(2+1)21=91
Tangent Equation is-
(y−32)=g′(x)(x−2)⇒33y−2=9x−2⇒9y−6=x−2⇒x−9y+4=0
Comments