We will calculate ∫ ( ( x 2 + 16 ) ) d x / ( x 4 ) \int(\sqrt(x^2+16))dx/(x^4) ∫ ( ( x 2 + 16 )) d x / ( x 4 )
put x=4tan(t)
So dx=4 s e c 2 t d t 4sec^2tdt 4 se c 2 t d t
Now integration becomes ∫ ( ( 4 ( 1 + t a n 2 t ) ) ∗ 4 s e c 2 t ) d t / ( 4 4 t a n 4 ( t ) ) \int((4\sqrt(1+tan^2t))*4sec^2t)dt/(4^4tan^4(t)) ∫ (( 4 ( 1 + t a n 2 t )) ∗ 4 se c 2 t ) d t / ( 4 4 t a n 4 ( t ))
=∫ ( s e c 3 ( t ) d t ) / ( 16 t a n 4 ( t ) ) \int(sec^3(t) dt)/(16tan^4(t)) ∫ ( se c 3 ( t ) d t ) / ( 16 t a n 4 ( t ))
=∫ ( 1 / c o s 3 ( t ) ) ∗ ( 16 ( c o s 4 ( t ) / s i n 4 ( t ) ) ) \int(1/cos^3(t))*(16(cos^4(t)/sin^4(t))) ∫ ( 1/ co s 3 ( t )) ∗ ( 16 ( co s 4 ( t ) / s i n 4 ( t )))
=∫ ( c o s ( t ) ) / ( 16 s i n 4 ( t ) ) \int(cos(t))/(16sin^4(t)) ∫ ( cos ( t )) / ( 16 s i n 4 ( t ))
Now let sin(t)=z So cos(t)dt=dz
So integration becomes ∫ ( d z / 16 z 4 ) = ∫ ( ( z ( − 4 ) d z ) ) / 16 \int(dz/16z^4) =\int((z^(-4)dz))/16 ∫ ( d z /16 z 4 ) = ∫ (( z ( − 4 ) d z )) /16
= -1/(48z^3)
=-1/(48sin^3(t)) As ∫ ( x n d x ) = ( x ( n + 1 ) ) / ( n + 1 ) \int(x^ndx)=(x^(n+1))/(n+1) ∫ ( x n d x ) = ( x ( n + 1 )) / ( n + 1 ) We had taken x=4tan(t) ,so tan(t)=x/4 ,in a right angle triangle tan(t)=p/b , so p=x & b=4
So h=( x 2 + 16 ) \sqrt(x^2+16) ( x 2 + 16 ) ,So s i n ( t ) = p / h = x / ( ( x 2 + 16 ) ) sin(t)=p/h=x/(\sqrt (x^2+16)) s in ( t ) = p / h = x / ( ( x 2 + 16 )) = − ( ( ( x 2 + 16 ) ) 3 ) / ( 48 x 3 ) + C =-((\sqrt(x^2+16))^3)/(48x^3) + C = − (( ( x 2 + 16 ) ) 3 ) / ( 48 x 3 ) + C (ans)
Here C is constant of integration.
Comments