Use an appropriate trigonometry substitution to evaluate ∫▒√(x^2+16)/x^4 dx
We will calculate "\\int(\\sqrt(x^2+16))dx\/(x^4)"
put x=4tan(t)
So dx="4sec^2tdt"
Now integration becomes "\\int((4\\sqrt(1+tan^2t))*4sec^2t)dt\/(4^4tan^4(t))"
="\\int(sec^3(t) dt)\/(16tan^4(t))"
="\\int(1\/cos^3(t))*(16(cos^4(t)\/sin^4(t)))"
="\\int(cos(t))\/(16sin^4(t))"
Now let sin(t)=z So cos(t)dt=dz
So integration becomes "\\int(dz\/16z^4) =\\int((z^(-4)dz))\/16"
= -1/(48z^3)
=-1/(48sin^3(t)) As "\\int(x^ndx)=(x^(n+1))\/(n+1)" We had taken x=4tan(t) ,so tan(t)=x/4 ,in a right angle triangle tan(t)=p/b , so p=x & b=4
So h="\\sqrt(x^2+16)" ,So "sin(t)=p\/h=x\/(\\sqrt (x^2+16))" "=-((\\sqrt(x^2+16))^3)\/(48x^3) + C" (ans)
Here C is constant of integration.
Comments
Leave a comment