(i) We have
a n = n 2 + 3 n − n {a_n} = \sqrt {{n^2} + 3n} - n a n = n 2 + 3 n − n
Then
a 1 = 1 + 3 − 1 = 1 {a_1} = \sqrt {1 + 3} - 1 = 1 a 1 = 1 + 3 − 1 = 1
a 2 = 4 + 6 − 2 = 10 − 2 {a_2} = \sqrt {4 + 6} - 2 = \sqrt {10} - 2 a 2 = 4 + 6 − 2 = 10 − 2
a 3 = 9 + 9 − 3 = 18 − 3 = 3 2 − 3 {a_3} = \sqrt {9 + 9} - 3 = \sqrt {18} - 3 = 3\sqrt 2 - 3 a 3 = 9 + 9 − 3 = 18 − 3 = 3 2 − 3
a 4 = 16 + 12 − 4 = 28 − 4 = 2 7 − 4 {a_4} = \sqrt {16 + 12} - 4 = \sqrt {28} - 4 = 2\sqrt 7 - 4 a 4 = 16 + 12 − 4 = 28 − 4 = 2 7 − 4
a 5 = 25 + 15 − 5 = 40 − 5 = 2 10 − 5 {a_5} = \sqrt {25 + 15} - 5 = \sqrt {40} - 5 = 2\sqrt {10} - 5 a 5 = 25 + 15 − 5 = 40 − 5 = 2 10 − 5
Since
lim n → ∞ ( n 2 + 3 n − n ) = lim n → ∞ ( n 2 + 3 n − n ) ( n 2 + 3 n + n ) n 2 + 3 n + n = lim n → ∞ n 2 + 3 n − n 2 n 2 + 3 n + n = lim n → ∞ 3 n n 2 + 3 n + n = lim n → ∞ 3 n 2 n 2 + 3 n + 1 = 3 1 + 0 + 1 = 3 1 + 1 = 3 2 \mathop {\lim }\limits_{n \to \infty } \left( {\sqrt {{n^2} + 3n} - n} \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{\left( {\sqrt {{n^2} + 3n} - n} \right)\left( {\sqrt {{n^2} + 3n} + n} \right)}}{{\sqrt {{n^2} + 3n} + n}} = \mathop {\lim }\limits_{n \to \infty } \frac{{{n^2} + 3n - {n^2}}}{{\sqrt {{n^2} + 3n} + n}} = \mathop {\lim }\limits_{n \to \infty } \frac{{3n}}{{\sqrt {{n^2} + 3n} + n}} = \mathop {\lim }\limits_{n \to \infty } \frac{3}{{\sqrt {\frac{{{n^2}}}{{{n^2}}} + \frac{3}{n}} + 1}} = \frac{3}{{\sqrt {1 + 0} + 1}} = \frac{3}{{1 + 1}} = \frac{3}{2} n → ∞ lim ( n 2 + 3 n − n ) = n → ∞ lim n 2 + 3 n + n ( n 2 + 3 n − n ) ( n 2 + 3 n + n ) = n → ∞ lim n 2 + 3 n + n n 2 + 3 n − n 2 = n → ∞ lim n 2 + 3 n + n 3 n = n → ∞ lim n 2 n 2 + n 3 + 1 3 = 1 + 0 + 1 3 = 1 + 1 3 = 2 3
then the sequence converges and its limit is 3 2 \frac{3}{2} 2 3 .
(ii) We have
a n = ( n + 3 n + 1 ) n {a_n} = {\left( {\frac{{n + 3}}{{n + 1}}} \right)^n} a n = ( n + 1 n + 3 ) n
Then
a 1 = ( 1 + 3 1 + 1 ) 1 = 2 {a_1} = {\left( {\frac{{1 + 3}}{{1 + 1}}} \right)^1} = 2 a 1 = ( 1 + 1 1 + 3 ) 1 = 2
a 2 = ( 2 + 3 2 + 1 ) 2 = 25 9 {a_2} = {\left( {\frac{{2 + 3}}{{2 + 1}}} \right)^2} = \frac{{25}}{9} a 2 = ( 2 + 1 2 + 3 ) 2 = 9 25
a 3 = ( 3 + 3 3 + 1 ) 3 = 27 8 {a_3} = {\left( {\frac{{3 + 3}}{{3 + 1}}} \right)^3} = \frac{{27}}{8} a 3 = ( 3 + 1 3 + 3 ) 3 = 8 27
a 4 = ( 4 + 3 4 + 1 ) 4 = 2401 625 {a_4} = {\left( {\frac{{4 + 3}}{{4 + 1}}} \right)^4} = \frac{{{\rm{2401}}}}{{625}} a 4 = ( 4 + 1 4 + 3 ) 4 = 625 2401
a 5 = ( 5 + 3 5 + 1 ) 5 = 1024 243 {a_5} = {\left( {\frac{{5 + 3}}{{5 + 1}}} \right)^5} = \frac{{{\rm{1024}}}}{{243}} a 5 = ( 5 + 1 5 + 3 ) 5 = 243 1024
Since
lim n → ∞ ( n + 3 n + 1 ) n = lim n → ∞ ( n + 1 + 2 n + 1 ) n = lim n → ∞ ( 1 + 2 n + 1 ) n = lim n → ∞ ( 1 + 1 n + 1 2 ) n + 1 2 ⋅ 2 n n + 1 = lim n → ∞ e 2 n n + 1 = e 2 \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{n + 3}}{{n + 1}}} \right)^n} = \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{n + 1 + 2}}{{n + 1}}} \right)^n} = \mathop {\lim }\limits_{n \to \infty } {\left( {1 + \frac{2}{{n + 1}}} \right)^n} = \mathop {\lim }\limits_{n \to \infty } {\left( {1 + \frac{1}{{\frac{{n + 1}}{2}}}} \right)^{\frac{{n + 1}}{2} \cdot \frac{{2n}}{{n + 1}}}} = \mathop {\lim }\limits_{n \to \infty } {e^{\frac{{2n}}{{n + 1}}}} = {e^2} n → ∞ lim ( n + 1 n + 3 ) n = n → ∞ lim ( n + 1 n + 1 + 2 ) n = n → ∞ lim ( 1 + n + 1 2 ) n = n → ∞ lim ( 1 + 2 n + 1 1 ) 2 n + 1 ⋅ n + 1 2 n = n → ∞ lim e n + 1 2 n = e 2
then the sequence converges and its limit is e 2 {e^2} e 2 .
Comments
Leave a comment