Slope at (x,y)
dxdy=(3−3x)2−6x(2+y)
Solving above differential equation:
It is first order linear ordinary differential equation
(2+y)dy=(3−3x)2−6x ∫(2+y)dy=∫(3−3x)2−6x ln∣y+2∣=23−3x2 +C
and the curve passes through (1,3)
ln∣y+2∣=23−3x2 +Cln∣3+2∣=23−3(1)2+cln∣5∣=C
Hence, C = ln|5|
So putting this value in above equation, we get
ln∣y+2∣=23−3x2+ln5y+2=e23−3x2+ln5y=e23−3x2+ln5−2
Hence equation of curve = y=e23−3x2+ln5−2
Comments