(i) Show that the sequence {n/(2n-1)}_(n=1)^∞ is monotonic. (ii) Is it bounded above and/or below? Give a reason for your answer. (iii) Can you concluded that it converges? Give a reason for your answer.
"i)\\newline\n\nGiven, a_n=\\frac{n}{2n-1}.\\newline\na_n-a_{n+1}=\\frac{n}{2n-1}-\\frac{n+1}{2n+1}.\\newline\n=\\frac{2n^2-n-2n^2+n-2n+1}{(2n-1)(2n+1)}\\newline\n=\\frac{-1}{2n+1}<0,\\space \\text{for all n}\\newline\n\\implies a_n<a_{n+1}\\newline\n\\implies a_n \\text{is monotonic.}\\newline\n\nii)\\newline\na_1=\\frac{1}{3}\\newline\na_2=\\frac{2}{5}\\newline\na_3=\\frac{3}{7}\\newline\n...\\newline\nSince, a_n is increasing sequence.\\newline\nThen, lim a_n=\\frac{1}{2}.\\newline\n\\text{Therefore, the given sequence islower bounded by }\\frac{1}{3}\\newline\n\\text{and upper bounded by 0.5.}\\newline\niii)\\newline\n\\text{Since, the given sequence is monotonic and bounded.}\\newline\n\\text{Therefore, it is convergent.}"
Comments
Leave a comment