How fast is the surface area of a spherical balloon increasing when the radius is 10 cm and the volume is increasing at 15 cm3 /sec?
Solution:
"\\dfrac{dV}{dt}=15 cm^3\/sec,\\ r=10 cm, \\dfrac{dA}{dt}=?"
"V=\\dfrac43\\pi r^3"
On differentiating w.r.t "r",
"\\dfrac{dV}{dt}=4\\pi r^2 \\dfrac{dr}{dt}\n\\\\ \\Rightarrow 15=4\\pi (10)^2 \\dfrac{dr}{dt}\n\\\\ \\Rightarrow \\dfrac{dr}{dt}=\\dfrac{3}{80\\pi} cm\/sec"
Now, "A=4\\pi r^2"
On differentiating w.r.t "r",
"\\dfrac{dA}{dt}=8\\pi r \\dfrac{dr}{dt}=8\\pi(10)(\\dfrac{3}{80\\pi})=3 cm^2\/sec"
Comments
Leave a comment