Given, the function f:R2→ R defined by f(x,y)=yx2+y.
(a)
lim(x,y)→(0,0)f(x,y)=lim(x,y)→(0,0)yx2+yc1:y=xis the curve.=limx→0xx2+xSubstitude y=x.=limx→0x+1=1
(b)
lim(x,y)→(0,0)f(x,y)=lim(x,y)→(0,0)yx2+yc2:y=2xis the curve.=limx→02xx2+(2x)Substitude y=2x.=limx→02x+2=1
(c)
lim(x,y)→(0,0)f(x,y)=lim(x,y)→(0,0)yx2+yc3:y=x2is the curve.=limx→0x2x2+(x2)Substitutey=x2.=limx→0x2=0
(d)
Let y=mx be the curve, where m is a constant.
lim(x,y)→(0,0)f(x,y)=lim(x,y)→(0,0)yx2+yc4:y=mxis the curve.=limx→0mxx2+(mx)Substitutey=mx.=limx→0mx+1=0
Comments