Determine the surface area of the solid obtained by rotating:
1) x² + y² = 16 from x = 2 to x = 4
2) y² = 12x from x = 0 to x = 3
3) y = x³ from x = 0 to x = 1
1) x² + y² = 16 from x = 2 to x = 4
"f(x)==\\sqrt{16-y^2}"
The surface area of the curve is given by"S = 2\\pi \\int_a^b f \\left(x\\right) \\sqrt{\\left(f'\\left(x\\right)\\right)^2+1}d x"
First, find the derivative
"f '\\left(x\\right)=\\left(\\sqrt{16 - x^{2}}\\right)'=- \\frac{x}{\\sqrt{16 - x^{2}}}"
Finally, calculate the integral
"S = \\int_{2}^{4} 2 \\pi \\sqrt{16 - x^{2}} \\sqrt{\\left(- \\frac{x}{\\sqrt{16 - x^{2}}}\\right)^{2} + 1} d x"
"=\\int_{2}^{4} 8 \\pi \\sqrt{- \\frac{1}{x^{2} - 16}} \\sqrt{16 - x^{2}} d x"
="\\int_{2}^{4}\\left( 8 \\pi \\sqrt{- \\frac{1}{x^{2} - 16}} \\sqrt{16 - x^{2}} \\right)dx=\\int_{2}^{4}\\left( 8 \\pi \\right)dx"
"=\\int_{2}^{4}\\left( 8 \\pi \\right)dx=\\left(8 \\pi x\\right)|_{\\left(x=4\\right)}-\\left(8 \\pi x\\right)|_{\\left(x=2\\right)}=16 \\pi"
"=16 \\pi\\\\ \\approx \\boxed{50.2654824574367}"
2) y² = 12x from x = 0 to x = 3
"f\\left(x\\right)=2 \\sqrt{3} \\sqrt{x}"
he surface area of the curve is given by"S = 2\\pi \\int_a^b f \\left(x\\right) \\sqrt{\\left(f'\\left(x\\right)\\right)^2+1}d x"
"f '\\left(x\\right)=\\left(2 \\sqrt{3} \\sqrt{x}\\right)'=\\frac{\\sqrt{3}}{\\sqrt{x}}"
calculate the integral
"S = \\int_{0}^{3} 2 \\pi 2 \\sqrt{3} \\sqrt{x} \\sqrt{\\left(\\frac{\\sqrt{3}}{\\sqrt{x}}\\right)^{2} + 1} d x \\\\=\\int_{0}^{3} 4 \\sqrt{3} \\pi \\sqrt{x} \\sqrt{\\frac{x + 3}{x}} d x"
"=\\int_{0}^{3}\\left( 4 \\pi \\sqrt{3 x + 9} \\right)dx"
"\\int_{0}^{3}\\left( 4 \\pi \\sqrt{3 x + 9} \\right)dx=\\left(\\frac{8 \\sqrt{3} \\pi \\left(x + 3\\right)^{\\frac{3}{2}}}{3}\\right)|_{\\left(x=3\\right)}-\\left(\\frac{8 \\sqrt{3} \\pi \\left(x + 3\\right)^{\\frac{3}{2}}}{3}\\right)|_{\\left(x=0\\right)}=- 24 \\pi + 48 \\sqrt{2} \\pi"
"=- 24 \\pi + 48 \\sqrt{2} \\pi\\\\\\approx \\boxed{137.860157345447}"
3) y = x³ from x = 0 to x = 1
f(x)=x3
"S = 2\\pi \\int_a^b f \\left(x\\right) \\sqrt{\\left(f'\\left(x\\right)\\right)^2+1}d x"
"f '\\left(x\\right)=\\left(x^{3}\\right)'=3 x^{2}"
"S = \\int_{0}^{1} 2 \\pi x^{3} \\sqrt{\\left(3 x^{2}\\right)^{2} + 1} d x=\\int_{0}^{1} 2 \\pi x^{3} \\sqrt{9 x^{4} + 1} d x"
"\\int_{0}^{1}\\left( 2 \\pi x^{3} \\sqrt{9 x^{4} + 1} \\right)dx \\\\=\\left(\\frac{\\pi \\left(9 x^{4} + 1\\right)^{\\frac{3}{2}}}{27}\\right)|_{\\left(x=1\\right)}-\\left(\\frac{\\pi \\left(9 x^{4} + 1\\right)^{\\frac{3}{2}}}{27}\\right)|_{\\left(x=0\\right)}\\\\=- \\frac{\\pi}{27} + \\frac{10 \\sqrt{10} \\pi}{27}"
"\\approx \\boxed{3.56312185201375}"
Comments
Leave a comment