1) x² + y² = 16 from x = 2 to x = 4
f(x)==16−y2
The surface area of the curve is given byS=2π∫abf(x)(f′(x))2+1dx
First, find the derivative
f′(x)=(16−x2)′=−16−x2x
Finally, calculate the integral
S=∫242π16−x2(−16−x2x)2+1dx
=∫248π−x2−16116−x2dx
=∫24(8π−x2−16116−x2)dx=∫24(8π)dx
=∫24(8π)dx=(8πx)∣(x=4)−(8πx)∣(x=2)=16π
=16π≈50.2654824574367
2) y² = 12x from x = 0 to x = 3
f(x)=23x
he surface area of the curve is given byS=2π∫abf(x)(f′(x))2+1dx
f′(x)=(23x)′=x3
calculate the integral
S=∫032π23x(x3)2+1dx=∫0343πxxx+3dx
=∫03(4π3x+9)dx
∫03(4π3x+9)dx=(383π(x+3)23)∣(x=3)−(383π(x+3)23)∣(x=0)=−24π+482π
=−24π+482π≈137.860157345447
3) y = x³ from x = 0 to x = 1
f(x)=x3
S=2π∫abf(x)(f′(x))2+1dx
f′(x)=(x3)′=3x2
S=∫012πx3(3x2)2+1dx=∫012πx39x4+1dx
∫01(2πx39x4+1)dx=(27π(9x4+1)23)∣(x=1)−(27π(9x4+1)23)∣(x=0)=−27π+271010π
≈3.56312185201375
Comments