Question #186582

Determine the average value of f(x,y) = ex+y over the region R=[0,2]X[0,2].


1
Expert's answer
2021-05-07T14:22:52-0400

Let f(x,y)=ex+yf(x,y)=e^{x+y} and R=[0,2]×[0,2]R=[0,2]\times [0,2] .

The average value of ff over RR is favg=1AreaRRf(x,y)dAf_\text{avg}=\frac{1}{\text{Area}_R}\iint _R f(x,y)dA .

AreaR=22=4\text{Area}_R=2^2=4

Rf(x,y)dA=0202ex+ydxdy=0202exeydxdy=02exdx02eydy=ex02  ey02=(e21)2\iint _R f(x,y)dA=\int\limits_0^2\int\limits_0^2e^{x+y}dxdy=\int\limits_0^2 \int\limits_0^2 e^{x}\cdot e^ydx dy= \int\limits_0^2e^{x}dx \cdot \int\limits_0^2e^ydy=e^x\big|^2_0\ \cdot \ e^y\big|_0^2=(e^2-1)^2


Answer: favg=(e21)24f_{\text{avg}}=\frac{(e^2-1)^2}{4} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS