Question #186273

Use the limit definition to find partial derivative of

 f(u,v,w)=u^2-nuv+(n+1) v^2-(n+2)uw+(n+3)vw^2-(n+4)u+(n+5)v-(n+6)w,Where n is the sum of your arid number e.g if 20-arid-470 choose n=4+7+0=11. 



1
Expert's answer
2021-05-07T10:13:35-0400

 f(u,v,w)=u2nuv+(n+1)v2(n+2)uw+(n+3)vw2(n+4)u+(n+5)v(n+6)wf(u,v,w)=u^2-nuv+(n+1)v^2-(n+2)uw+(n+3)vw^2-(n+4)u+(n+5)v-(n+6)w


fu=limh0f(u,h,v,w)f(u,v,w)hf_u=lim_{h\to 0} \dfrac{f(u,h,v,w)-f(u,v,w)}{h}



 fu=limh0(u+h)2n(u+h)v+(n+1)v2(n+2)(u+h)w+(n+3)vw2(n+4)(u+h)+(n+5)v(n+6)wf(u,v,w)hf_u=lim_{h\to 0}\dfrac{ (u+h)^2-n(u+h)v+(n+1)v^2-(n+2)(u+h)w+(n+3)vw^2-(n+4)(u+h)+(n+5)v-(n+6)w-f(u,v,w)}{h}


   =limh0(u+h)2u2nv(u+hu)+(n+2)w(u+hu)(n+4)(u+h4)h=lim_{h\to 0}\dfrac{(u+h)^2-u^2-nv(u+h-u)+(n+2)w(u+h-u)-(n+4)(u+h-4)}{h}


=limh0h((2u+h)nv+(n+2)w(n+4))h=lim_{h\to 0} \dfrac{h((2u+h)-nv+(n+2)w-(n+4))}{h}


   =limh02u+h)nv+(n+2)w(n+4)=lim _{h\to 0} 2u+h)-nv+(n+2)w-(n+4)

  

   =2unv+(n+2)w(n+4)=2u-nv+(n+2)w-(n+4)



Similarly we get fv=nu+(n+1)2v+(n+3)w2+(n+s)f_v=-nu+(n+1)2v+(n+3)w^2+(n+s)


      and fw=(n+2)v+(n+3)v(2w)(n+6)f_w=-(n+2)v+(n+3)v(2w)-(n+6)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS