Consider a lamina that occupies the region D bounded by the parabola x = 1 - y2 and the coordinate axes in the first quadrant with density function p (x, y) = y. Find the center of mass.
Given, the region D is bounded by the parabola x = 1 - y2 and the coordinate axes in the first quadrant with density function p (x, y) = y.
Moments,
"M_x=\\int\\int yp(x,y)dA\\newline=\\int_{x=0}^1 \\int_{y=0}^1 yp(x,y)dA\\newline=\\int_{x=0}^1 \\int_{y=0}^1 y^2dydx\\newline=\\int_{x=0}^1[ \\frac{y^3}{3}]_{0}^1dydx\\newline=\\frac{1}{3}\\int_{x=0}^1dx\\newline=\\frac{1}{3}[ x]_{0}^1\\newline=\\frac{1}{3}\\newline"
"M_y=\\int\\int xp(x,y)dA\\newline=\\int_{x=0}^1 \\int_{y=0}^1 xydydx\\newline=\\int_{x=0}^1x[ \\frac{y^2}{2}]_{0}^1dydx\\newline=\\frac{1}{2}\\int_{x=0}^1xdx\\newline=\\frac{1}{2}[ \\frac{x^2}{2}]_{0}^1\\newline=\\frac{1}{4}"
And,
Mass,m is given by,
"m=\\int\\int p(x,y)dA\\newline=\\int_{x=0}^1 \\int_{y=0}^1 ydydx\\newline=\\int_{x=0}^1[ \\frac{y^2}{2}]_{0}^1dydx\\newline=\\frac{1}{2}\\int_{x=0}^1dx\\newline=\\frac{1}{2}[ x]_{0}^1\\newline=\\frac{1}{2}"
Let (x,y) be the center of mass.
"y=\\frac{M_y}{m}\\newline=\\frac{\\frac{1}{4}}{\\frac{1}{2}}\\newline=\\frac{1}{2}\\newline\nx=\\frac{M_x}{m}\\newline=\\frac{\\frac{1}{3}}{\\frac{1}{2}}\\newline=\\frac{2}{3}"
Thus, center mass is "(\\frac{2}{3},\\frac{1}{2})."
Comments
Leave a comment