Given, the region D is bounded by the parabola x = 1 - y2 and the coordinate axes in the first quadrant with density function p (x, y) = y.
Moments,
Mx=∫∫yp(x,y)dA=∫x=01∫y=01yp(x,y)dA=∫x=01∫y=01y2dydx=∫x=01[3y3]01dydx=31∫x=01dx=31[x]01=31
My=∫∫xp(x,y)dA=∫x=01∫y=01xydydx=∫x=01x[2y2]01dydx=21∫x=01xdx=21[2x2]01=41
And,
Mass,m is given by,
m=∫∫p(x,y)dA=∫x=01∫y=01ydydx=∫x=01[2y2]01dydx=21∫x=01dx=21[x]01=21
Let (x,y) be the center of mass.
y=mMy=2141=21x=mMx=2131=32
Thus, center mass is (32,21).
Comments
Leave a comment