How fast is the surface area of a spherical balloon increasing when the radius is 10 cm and
the volume is increasing at 15 cm3/sec? [7]
2. Let f be the function defined by
f (x) = xe-x:
(a) Determine the y–intercept.
(b) Determine the horizontal and vertical asymptotes.
(c) Use the sign pattern for f' (x) to determine
(i) the interval(s) over which f rises and where it falls;
(ii) the local extrema.
(d) Use the sign pattern for f'' (x) to determine
(i) where the graph of f is concave up and where it is concave down;
(ii) the inflection point(s) (if any).
1.
Let r, v and s be the radius, the volume and the surface area of a sphere at any instant t respectively.
Volume of sphere="v=\\frac{4}{3}\u200b\u03c0r^3"
Then,
"v=\\frac{4}{3}\u200b\u03c0r^3\\newline\n\n\\frac{dv}{dt}=4\u200b\u03c0r^2.\\frac{dr}{dt}\u200b\\newline\n\n\\text{given} \\frac{dv}{dt}\u200b=15 \\text { cm}^3 \\text{\/sec and} r=10 \\text{cm}\\newline\n\n\\text{Therefore}, 15=4\u200b\u03c0\u00d7(10)^2\u00d7\\frac{dr}{dt}\u200b\\newline\n\n\\frac{dr}{dt}=\\frac{15}{400\u03c0}=\\frac{3}{80\u03c0}\\newline"
Now, surface area="s=4\u03c0r^2"
Then,
"s=4\u03c0r^2\\newline\n\\frac{ds}{dt}\u200b=8\u03c0r\\frac{dr}{dt}\u200b\\newline\n\nor, \\frac{ds}{dt}\u200b=8\u00d7\u03c0\u00d710\u00d7\\frac{3}{80\u03c0}\u200b \\hspace{1cm} [as\\space r=10, \\frac{dr}{dt}\u200b=\\frac{3}{80\u03c0}\u200b]\\newline\n\n \\frac{ds}{dt}\u200b=3 \\text{cm}^2\\text{\/sec}.\\newline\n\\text{Thus, the rate change of surface area 3cm}^2\\text{\/sec.}"
2.
Given, "f(x)=xe^{-x}" .
(a)
"put \\space x=0,\\newline\ny(0)=0"
Thus, the y-intercept is y=0.
(b)
For horizontal asymptotes,
"lim_{x \\to \u221e} xe^{-x}=lim_{x \\to \u221e} \\frac{x}{e^{x}}\\hspace{1cm} ( intermidiate form)\\newline\n\\text{By L'Hospital rule,}\\newline\nlim_{x \\to \u221e} \\frac{1}{e^{x}}=0"
Thus, horizontal asymptotes is y=0.
For vertical asymptotes,
When y "\\to" ∞.
Therefore, "f(x)=xe^{-x}=\\frac{x}{e^x}"
When "e^{x} =0" then y "\\to" to ∞. But "e^{x} \\neq 0, \\forall x".
Therefore, there is no vertical asymptote.
(c)
"f'(x)=e^{-x}(1-x)\\newline\n\\text{Now, f'(x)=0 at x=1.}\\newline\n\\text{Therefore, intervals are} (-\u221e,1) \\text{and} (1,\u221e).\\newline\n(i)\\newline\nIn (-\u221e,1), f'(x)<0 \\implies \\text{f rises} \\newline\n\\text{and in} (1,\u221e) f'(x)>0 \\implies \\text{ f fall }.\\newline\n(ii)\\newline\n\\text{Since, there is only one extreme point. And, it is global maxima.}"
(d)
"f''(x)=e^{-x}(x-2)\\newline\n\\text{Now, f''(x)=0 at x=2.}\\newline\n\\text{Therefore, intervals are} (-\u221e,2) \\text{and} (2,\u221e).\\newline\n(i)\\newline\nIn (-\u221e,2), f''(x)<0 \\implies \\text{f is concave down} \\newline\n\\text{and in} (2,\u221e) f''(x)>0 \\implies \\text{ f is concave up}.\\newline\n(ii)\\newline\n\\text{Infection point is x=2,because there f''=0.} \\newline \\text{And, f changes from concave down to concave up.}"
Comments
Leave a comment