Find the area using definite integration
1.) y = 3x2 from x = 1 to x = 2
2.) xy = -1 from x = 1 to x = 2
3.) y = 4 - x2 from x = -3 to x = 3
1) y = 3x2 from x = 1 to x = 2
"\\int_{1}^23x^2dx=3\\int_{1}^2x^2dx=3[\\frac{x^{2+1}}{2+1}]|_1^2=3[\\frac{x^{3}}{3}]|_1^2=x^3|_1^2=2^3-1^3 =8 - 1=7"
2) xy = -1 from x = 1 to x = 2
"xy=-1\\implies y = -\\frac{1}{x}"
"\\int_1^2-\\frac{dx}{x}=-[ln|x|]|_1^2=-(ln(2)-ln(1)) =-ln(2)"
3) y = 4 - x2 from x = -3 to x = 3
"\\int_{-3}^3(4-x^2)dx=\\int_{-3}^34dx-\\int_{-3}^3x^2dx=4[x]|_{-3}^3-[\\frac{x^3}{3}]|_{-3}^3=4(3-(-3))-(\\frac{27-(-27)}{3})=12+12-(9+9)=24-18=6"
Comments
Leave a comment