First, we can rewrite socen equations:
y=x−2→x=y+2
(A) find the intersection points of the graphs of functions:
We need to solve system:
{x=y2,x=y+2y2−y−2=0y=2,y=−1
And now we can find the area:
S=∫−12(2+y−y2)dy=2y+2y2−3y3∣−12=4+2−38−−(−2+21+31)=5−21=4.5
(B)
V=π∫abf2(y)dy=π∫−12(2+y−y2)2dy==π∫−12(4+2y−2y2+y2+2y−y3+y4+2y2−y3)dy==π∫−12(4+y2+y4+4y−4y2−2y3)==π∫−12(4−3y2+y4−2y3)dy==π(4y−y3+5y5−2y4∣−12)==π(8−8+532−8−(−4+1−51−21))==π(533−5+21)=π1066−50+5=1021π
Comments