Evaluate the integration by substitution ∫▒sin2θ/√(〖cos〗^2+16) dθ
We have to find value of the integral
I = ∫sin2θcos2θ+16dθ\int \dfrac{sin2 \theta}{\sqrt{cos^2{\theta}+16}}d\theta∫cos2θ+16sin2θdθ
Using the substitution,
sin2θ=2cosθsinθsin2\theta = 2cos\theta sin\thetasin2θ=2cosθsinθ
= ∫−−1cos2θ+162sinθcosθdθ\int- \dfrac{-1}{\sqrt{cos^2{\theta}+16}}2sin\theta cos\theta d\theta∫−cos2θ+16−12sinθcosθdθ
Substitute u=cos2θ+16u = cos^2{\theta}+16u=cos2θ+16
dudθ=−2cosθsinθ\dfrac{du}{d\theta} = -2cos\theta sin\thetadθdu=−2cosθsinθ
Hence,
dθ=−du2cosθsinθd\theta = -\dfrac{du}{2cos\theta sin\theta}dθ=−2cosθsinθdu
Hence integral will become
−∫duu-\int \dfrac{du}{\sqrt{u}}−∫udu
=−2u= -2\sqrt{u}=−2u
Using substitution u=cos2θ+16u = cos^2{\theta}+16u=cos2θ+16
We get , I=−2cos2θ+16+CI = -2\sqrt{cos^2{\theta}+16} + CI=−2cos2θ+16+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments