Evaluate the integration by substitution ∫▒sin2θ/√(〖cos〗^2+16) dθ
We have to find value of the integral
I = "\\int \\dfrac{sin2 \\theta}{\\sqrt{cos^2{\\theta}+16}}d\\theta"
Using the substitution,
"sin2\\theta = 2cos\\theta sin\\theta"
= "\\int- \\dfrac{-1}{\\sqrt{cos^2{\\theta}+16}}2sin\\theta cos\\theta d\\theta"
Substitute "u = cos^2{\\theta}+16"
"\\dfrac{du}{d\\theta} = -2cos\\theta sin\\theta"
Hence,
"d\\theta = -\\dfrac{du}{2cos\\theta sin\\theta}"
Hence integral will become
"-\\int \\dfrac{du}{\\sqrt{u}}"
"= -2\\sqrt{u}"
Using substitution "u = cos^2{\\theta}+16"
We get , "I = -2\\sqrt{cos^2{\\theta}+16} + C"
Comments
Leave a comment