We have to find value of the integral
I = ∫ s i n 2 θ c o s 2 θ + 16 d θ \int \dfrac{sin2 \theta}{\sqrt{cos^2{\theta}+16}}d\theta ∫ co s 2 θ + 16 s in 2 θ d θ
Using the substitution,
s i n 2 θ = 2 c o s θ s i n θ sin2\theta = 2cos\theta sin\theta s in 2 θ = 2 cos θ s in θ
= ∫ − − 1 c o s 2 θ + 16 2 s i n θ c o s θ d θ \int- \dfrac{-1}{\sqrt{cos^2{\theta}+16}}2sin\theta cos\theta d\theta ∫ − co s 2 θ + 16 − 1 2 s in θ cos θ d θ
Substitute u = c o s 2 θ + 16 u = cos^2{\theta}+16 u = co s 2 θ + 16
d u d θ = − 2 c o s θ s i n θ \dfrac{du}{d\theta} = -2cos\theta sin\theta d θ d u = − 2 cos θ s in θ
Hence,
d θ = − d u 2 c o s θ s i n θ d\theta = -\dfrac{du}{2cos\theta sin\theta} d θ = − 2 cos θ s in θ d u
Hence integral will become
− ∫ d u u -\int \dfrac{du}{\sqrt{u}} − ∫ u d u
= − 2 u = -2\sqrt{u} = − 2 u
Using substitution u = c o s 2 θ + 16 u = cos^2{\theta}+16 u = co s 2 θ + 16
We get , I = − 2 c o s 2 θ + 16 + C I = -2\sqrt{cos^2{\theta}+16} + C I = − 2 co s 2 θ + 16 + C
Comments