Definition of derivative is:
h′(x)=ph(x+p)−h(x) where: p=Δx
Let y=h(x)=2x−1 , then
y+Δy=2(x+Δx)−1y+Δy=2x+2Δx−1Δy=2x+2Δx−1−yΔy=2x+2Δx−1−2x−1ΔxΔy=Δx2x+2Δx−1−2x−1 Rationalising the numerator, we have:
ΔxΔy=Δx2x+2Δx−1−2x−1×2x+2Δx−1+2x−12x+2Δx−1+2x−1ΔxΔy=Δx(2x+2Δx−1+2x−1)2x+2Δx−1−(2x−1)ΔxΔy=Δx(2x+2Δx−1+2x−1)2x+2Δx−1−2x+1ΔxΔy=Δx(2x+2Δx−1+2x−1)2ΔxΔxΔy=2x+2Δx−1+2x−12 Taking limits of both sides
Δx→0limΔxΔy=Δx→0lim2x+2Δx−1+2x−12dxdy=2x−1+2x−12dxdy=22x−12dxdy=2x−11 Thus:
h′(x)=dxdy=2x−11
Comments