Question #177112

Use the definition of derivative to find the derivative of h(t) = √ 2x − 1.


1
Expert's answer
2021-04-12T18:14:41-0400

Definition of derivative is:


h(x)=h(x+p)h(x)ph'(x) = \frac{h(x+p)-h(x)}{p}

where: p=Δxp= \Delta x


Let y=h(x)=2x1y=h(x)=\sqrt{2x − 1} , then


y+Δy=2(x+Δx)1y+Δy=2x+2Δx1Δy=2x+2Δx1yΔy=2x+2Δx12x1ΔyΔx=2x+2Δx12x1Δxy+\Delta y=\sqrt{2(x+\Delta x) − 1}\\ y+\Delta y=\sqrt{2x+2\Delta x − 1}\\ \Delta y=\sqrt{2x+2\Delta x − 1}-y\\ \Delta y=\sqrt{2x+2\Delta x − 1}-\sqrt{2x-1}\\ \frac{\Delta y}{\Delta x}= \frac{\sqrt{2x+2\Delta x − 1}-\sqrt{2x-1}}{\Delta x}

Rationalising the numerator, we have:


ΔyΔx=2x+2Δx12x1Δx×2x+2Δx1+2x12x+2Δx1+2x1ΔyΔx=2x+2Δx1(2x1)Δx(2x+2Δx1+2x1)ΔyΔx=2x+2Δx12x+1Δx(2x+2Δx1+2x1)ΔyΔx=2ΔxΔx(2x+2Δx1+2x1)ΔyΔx=22x+2Δx1+2x1\frac{\Delta y}{\Delta x}= \frac{\sqrt{2x+2\Delta x − 1}-\sqrt{2x-1}}{\Delta x} \times \frac{\sqrt{2x+2\Delta x − 1}+\sqrt{2x-1}}{\sqrt{2x+2\Delta x − 1}+\sqrt{2x-1}}\\ \frac{\Delta y}{\Delta x}= \frac{2x+2\Delta x − 1-(2x-1)}{\Delta x(\sqrt{2x+2\Delta x − 1}+\sqrt{2x-1})} \\ \frac{\Delta y}{\Delta x}= \frac{2x+2\Delta x − 1-2x+1}{\Delta x(\sqrt{2x+2\Delta x − 1}+\sqrt{2x-1})} \\ \frac{\Delta y}{\Delta x}= \frac{2\Delta x}{\Delta x(\sqrt{2x+2\Delta x − 1}+\sqrt{2x-1})} \\ \frac{\Delta y}{\Delta x}= \frac{2}{\sqrt{2x+2\Delta x − 1}+\sqrt{2x-1}} \\

Taking limits of both sides


limΔx0ΔyΔx=limΔx022x+2Δx1+2x1dydx=22x1+2x1dydx=222x1dydx=12x1\lim_{\Delta x \rightarrow 0}\frac{\Delta y}{\Delta x}= \lim_{\Delta x \rightarrow 0}\frac{2}{\sqrt{2x+2\Delta x − 1}+\sqrt{2x-1}} \\ \frac{dy}{dx} =\frac{2}{\sqrt{2x − 1}+\sqrt{2x-1}} \\ \frac{dy}{dx} =\frac{2}{2\sqrt{2x-1}} \\ \frac{dy}{dx} =\frac{1}{\sqrt{2x-1}} \\

Thus:


h(x)=dydx=12x1h'(x) = \frac{dy}{dx} =\frac{1}{\sqrt{2x-1}} \\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS