Definition of derivative is:
"h'(x) = \\frac{h(x+p)-h(x)}{p}" where: "p= \\Delta x"
Let "y=h(x)=\\sqrt{2x \u2212 1}" , then
"y+\\Delta y=\\sqrt{2(x+\\Delta x) \u2212 1}\\\\\ny+\\Delta y=\\sqrt{2x+2\\Delta x \u2212 1}\\\\\n\\Delta y=\\sqrt{2x+2\\Delta x \u2212 1}-y\\\\\n\\Delta y=\\sqrt{2x+2\\Delta x \u2212 1}-\\sqrt{2x-1}\\\\\n\\frac{\\Delta y}{\\Delta x}= \\frac{\\sqrt{2x+2\\Delta x \u2212 1}-\\sqrt{2x-1}}{\\Delta x}" Rationalising the numerator, we have:
"\\frac{\\Delta y}{\\Delta x}= \\frac{\\sqrt{2x+2\\Delta x \u2212 1}-\\sqrt{2x-1}}{\\Delta x} \\times \\frac{\\sqrt{2x+2\\Delta x \u2212 1}+\\sqrt{2x-1}}{\\sqrt{2x+2\\Delta x \u2212 1}+\\sqrt{2x-1}}\\\\\n\\frac{\\Delta y}{\\Delta x}= \\frac{2x+2\\Delta x \u2212 1-(2x-1)}{\\Delta x(\\sqrt{2x+2\\Delta x \u2212 1}+\\sqrt{2x-1})} \\\\\n\\frac{\\Delta y}{\\Delta x}= \\frac{2x+2\\Delta x \u2212 1-2x+1}{\\Delta x(\\sqrt{2x+2\\Delta x \u2212 1}+\\sqrt{2x-1})} \\\\\n\\frac{\\Delta y}{\\Delta x}= \\frac{2\\Delta x}{\\Delta x(\\sqrt{2x+2\\Delta x \u2212 1}+\\sqrt{2x-1})} \\\\\n\\frac{\\Delta y}{\\Delta x}= \\frac{2}{\\sqrt{2x+2\\Delta x \u2212 1}+\\sqrt{2x-1}} \\\\" Taking limits of both sides
"\\lim_{\\Delta x \\rightarrow 0}\\frac{\\Delta y}{\\Delta x}= \\lim_{\\Delta x \\rightarrow 0}\\frac{2}{\\sqrt{2x+2\\Delta x \u2212 1}+\\sqrt{2x-1}} \\\\\n\\frac{dy}{dx} =\\frac{2}{\\sqrt{2x \u2212 1}+\\sqrt{2x-1}} \\\\\n\\frac{dy}{dx} =\\frac{2}{2\\sqrt{2x-1}} \\\\\n\\frac{dy}{dx} =\\frac{1}{\\sqrt{2x-1}} \\\\" Thus:
"h'(x) = \\frac{dy}{dx} =\\frac{1}{\\sqrt{2x-1}} \\\\"
Comments
Leave a comment