Using the method of cylindrical shells, set up an integral for the volume of the torus formed when the circle of radius 2 units covered at (3,0) is revolved about the line x=6
The equation of the circle is-
"(x-3)^2+y^2=4\\Rightarrow y=f(x)=\\sqrt{4-(x-3)^2}"
The Volume of the torus formed about the line x=6 is-
"V=2\\pi\\int_{0}^2xf(x)dx"
"=2\\pi\\int_{0}^2x\\sqrt{4-(x-3)^2}dx"
"=2\\pi\\int_0^2(x-3+3)\\sqrt{4-(x-3)^2}dx"
"=2\\pi[\\int_0^2(x-3)\\sqrt{4-(x-3)^2}dx+\\int_0^23\\sqrt{4-(x-3)^2}dx]"
"=2\\pi[-\\dfrac{(4-(x-3)^2)^{\\frac{3}{2}}}{3}+\\dfrac{3(x-3)}{2}\\sqrt{4-(x-3)^2}+6sin^{-1}(\\dfrac{x-3}{2})]_0^2"
"=2\\pi[-\\dfrac{-1-\\dfrac{3}{2}\\sqrt{3}}{1}+6sin^{-1}(-1)-(-\\dfrac{5}{3}+\\dfrac{-9}{2}\\sqrt{4}+6sin^{-1}(1)"
"=2\\pi (1+\\dfrac{3\\sqrt{3}}{2}+\\dfrac{5}{3}+9)=2\\pi(\\dfrac{35}{3}+\\dfrac{3\\sqrt{3}}{2})"
Comments
Leave a comment