Question #177461

Using the method of cylindrical shells, set up an integral for the volume of the torus formed when the circle of radius 2 units covered at (3,0) is revolved about the line x=6


1
Expert's answer
2021-04-25T08:35:09-0400

The equation of the circle is-


(x3)2+y2=4y=f(x)=4(x3)2(x-3)^2+y^2=4\Rightarrow y=f(x)=\sqrt{4-(x-3)^2}


The Volume of the torus formed about the line x=6 is-


V=2π02xf(x)dxV=2\pi\int_{0}^2xf(x)dx


=2π02x4(x3)2dx=2\pi\int_{0}^2x\sqrt{4-(x-3)^2}dx


=2π02(x3+3)4(x3)2dx=2\pi\int_0^2(x-3+3)\sqrt{4-(x-3)^2}dx


=2π[02(x3)4(x3)2dx+0234(x3)2dx]=2\pi[\int_0^2(x-3)\sqrt{4-(x-3)^2}dx+\int_0^23\sqrt{4-(x-3)^2}dx]


=2π[(4(x3)2)323+3(x3)24(x3)2+6sin1(x32)]02=2\pi[-\dfrac{(4-(x-3)^2)^{\frac{3}{2}}}{3}+\dfrac{3(x-3)}{2}\sqrt{4-(x-3)^2}+6sin^{-1}(\dfrac{x-3}{2})]_0^2


=2π[13231+6sin1(1)(53+924+6sin1(1)=2\pi[-\dfrac{-1-\dfrac{3}{2}\sqrt{3}}{1}+6sin^{-1}(-1)-(-\dfrac{5}{3}+\dfrac{-9}{2}\sqrt{4}+6sin^{-1}(1)


=2π(1+332+53+9)=2π(353+332)=2\pi (1+\dfrac{3\sqrt{3}}{2}+\dfrac{5}{3}+9)=2\pi(\dfrac{35}{3}+\dfrac{3\sqrt{3}}{2})



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS