Evaluate the integration by substitution ∫▒〖1/√(1+√(1+x)) dx〗
Given integral is-
"\\int\\dfrac{1}{\\sqrt{1+\\sqrt{1+x}}}dx" \
Let
"1+x=t^2\\\\\n\n \\Rightarrow dx=2tdt"
"\\implies Integral =\\int\\dfrac{2t}{\\sqrt{1+t}}dt"
"=\\int 2\\dfrac{(1+t-1)}{\\sqrt{1+t}}dt"
"=\\int 2({\\sqrt{1+t}}-\\dfrac{1}{\\sqrt{1+t}})dt"
"=2(\\dfrac{2(1+t)^{\\dfrac{3}{2}}}{3}-2\\sqrt{1+t})+C"
"=\\dfrac{4}{3}((1+\\sqrt{1+x})^{\\dfrac{3}{2}})-4\\sqrt{1+\\sqrt{1+x}}+C"
Comments
Leave a comment