Evaluate the integration by substitution ∫▒〖1/√(1+√(1+x)) dx〗
Given integral is-
∫11+1+xdx\int\dfrac{1}{\sqrt{1+\sqrt{1+x}}}dx∫1+1+x1dx \
Let
1+x=t2⇒dx=2tdt1+x=t^2\\ \Rightarrow dx=2tdt1+x=t2⇒dx=2tdt
⟹ Integral=∫2t1+tdt\implies Integral =\int\dfrac{2t}{\sqrt{1+t}}dt⟹Integral=∫1+t2tdt
=∫2(1+t−1)1+tdt=\int 2\dfrac{(1+t-1)}{\sqrt{1+t}}dt=∫21+t(1+t−1)dt
=∫2(1+t−11+t)dt=\int 2({\sqrt{1+t}}-\dfrac{1}{\sqrt{1+t}})dt=∫2(1+t−1+t1)dt
=2(2(1+t)323−21+t)+C=2(\dfrac{2(1+t)^{\dfrac{3}{2}}}{3}-2\sqrt{1+t})+C=2(32(1+t)23−21+t)+C
=43((1+1+x)32)−41+1+x+C=\dfrac{4}{3}((1+\sqrt{1+x})^{\dfrac{3}{2}})-4\sqrt{1+\sqrt{1+x}}+C=34((1+1+x)23)−41+1+x+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments