Question #177366

Evaluate the integration by substitution ∫▒〖1/√(1+√(1+x)) dx〗


1
Expert's answer
2021-04-15T07:20:26-0400

Given integral is-

11+1+xdx\int\dfrac{1}{\sqrt{1+\sqrt{1+x}}}dx \


Let

1+x=t2dx=2tdt1+x=t^2\\ \Rightarrow dx=2tdt


    Integral=2t1+tdt\implies Integral =\int\dfrac{2t}{\sqrt{1+t}}dt


=2(1+t1)1+tdt=\int 2\dfrac{(1+t-1)}{\sqrt{1+t}}dt


=2(1+t11+t)dt=\int 2({\sqrt{1+t}}-\dfrac{1}{\sqrt{1+t}})dt


=2(2(1+t)32321+t)+C=2(\dfrac{2(1+t)^{\dfrac{3}{2}}}{3}-2\sqrt{1+t})+C


=43((1+1+x)32)41+1+x+C=\dfrac{4}{3}((1+\sqrt{1+x})^{\dfrac{3}{2}})-4\sqrt{1+\sqrt{1+x}}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS