Evaluate the derivative lim┬(x→1)[1/(1-x) ∫_(x^2)^x▒(t^2-1)dt]
"lim_{x\\rightarrow1}[\\dfrac{1}{1-x}\\int_{-x^2}^{x^2}(t^2-1)dt]"
"=lim_{x\\rightarrow1}[\\dfrac{1}{1-x}(\\dfrac{t^3}{3}-t)|_{-x^2}^{x^2}"
"=lim_{x\\rightarrow1}[\\dfrac{1}{1-x}(\\dfrac{x^6}{3}-x^2+\\dfrac{x^6}{3}-x^2)"
"=lim_{x\\rightarrow1}[\\dfrac{1}{1-x}2x^2(\\dfrac{x^3}{3}-1)"
"=\\dfrac{2(1)^2(\\dfrac{1}{3}-1)}{1-1}=\\infty"
Hence The given limit does not exist.
Comments
Leave a comment