Answer to Question #177370 in Calculus for Moel Tariburu

Question #177370

Evaluate the derivative lim┬(x→1)⁡[1/(1-x) ∫_(x^2)^x▒(t^2-1)dt]


1
Expert's answer
2021-04-13T12:24:50-0400

limx1[11xx2x2(t21)dt]lim_{x\rightarrow1}[\dfrac{1}{1-x}\int_{-x^2}^{x^2}(t^2-1)dt]


=limx1[11x(t33t)x2x2=lim_{x\rightarrow1}[\dfrac{1}{1-x}(\dfrac{t^3}{3}-t)|_{-x^2}^{x^2}


=limx1[11x(x63x2+x63x2)=lim_{x\rightarrow1}[\dfrac{1}{1-x}(\dfrac{x^6}{3}-x^2+\dfrac{x^6}{3}-x^2)


=limx1[11x2x2(x331)=lim_{x\rightarrow1}[\dfrac{1}{1-x}2x^2(\dfrac{x^3}{3}-1)


=2(1)2(131)11==\dfrac{2(1)^2(\dfrac{1}{3}-1)}{1-1}=\infty


Hence The given limit does not exist.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment