If a=(xz^(3))i-(2x^(2)yz)j+(2yz^(4))k find curl a at (1 -1 1)
"\\text{curl } \\vec a=\\nabla\\times\\vec a=\\begin{vmatrix}\n \\vec i & \\vec j & \\vec k \\\\ \\\\\n \\dfrac{\\partial}{\\partial x} & \\dfrac{\\partial}{\\partial y} & \\dfrac{\\partial}{\\partial z} \\\\ \\\\\nxz^3& -2x^2yz & 2yz^4\n\\end{vmatrix}"
"=\\vec i(2z^4-(-2x^2y)-\\vec j(0-3xz^2)+\\vec k(-4xyz-0)"
"=(2z^4+2x^2y)\\vec i+3xz^2\\vec j-4xyz\\vec k"
"\\text{curl } \\vec a\\big|_{(1,-1,1)}=3\\vec j+4\\vec k"
Comments
Leave a comment