Determine the limit when x goes to zero (x^(2)+5x-4)/(x^(2)+1) if it exists.
limx→0x2+5x−4x2+1=(0)2+5(0)−4(0)2+1=0+0−40+1\lim \limits_{x \to 0} \frac{x^{2} + 5x - 4}{x^{2} + 1} = \frac {(0)^{2} + 5(0) - 4}{(0)^{2} + 1} = \frac{0+0-4}{0+1}x→0limx2+1x2+5x−4=(0)2+1(0)2+5(0)−4=0+10+0−4
limx→0x2+5x−4x2+1=−41=−4\lim \limits_{x \to 0} \frac{x^{2} + 5x - 4}{x^{2} + 1} = \frac{-4}{1} = -4x→0limx2+1x2+5x−4=1−4=−4
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment