Use the definition of limit to prove that the sequence {n − 1 }∞n=1 is divergent.
"Solution: Using ~the ~definition~ we~have, Let~a_n={n-1}\n\\\\ \\lim_{n \\to \\infty} a_n = \\lim_{n \\to \\infty} {n-1}=L\n\\\\there~ exists~ an ~\\epsilon~such~that~for~all~N>0,there~is~an~n>N~with~\n\\\\|a_n-L| \\geq ~\\epsilon~~~~~................................................(1)\n\\\\Since~ when~ we~ put~n=1,2,3,4,.......\n\\\\we~get~sequence~\\{-1,0,1,2,3,4,......\\} \n\\\\ when ~we~put~\\lim_{n \\to \\infty} ~it ~approches~ to ~\\infty. \n\\\\\\therefore , by ~(1),~sequencce~\\{a_n\\} ~diverges."
Comments
Leave a comment