Question #157998

Show that f(x)=(x^3)+(3x^2)-1 has at least one zero in each of the intervals [0,1],[-1,0] and [-3,-2]


1
Expert's answer
2021-01-26T04:17:38-0500

For the proof, we will use the intermediate value theorem states that if f is a continuous function whose domain contains the interval [a, b], then it takes on any given value between f(a) and f(b) at some point within the interval.

This has two important corollaries:

  1. If a continuous function has values of opposite sign inside an interval, then it has a root in that interval (Bolzano's theorem).
  2. The image of a continuous function over an interval is itself an interval.


In our case,

1) x[0,1]x\in[0,1]



{f(0)=03+3021=1<0f(1)=13+3121=3>0c(0,1):f(c)=0\left\{\begin{array}{l} f(0)=0^3+3\cdot 0^2-1=-1<0\\[0.3cm] f(1)=1^3+3\cdot 1^2-1=3>0 \end{array}\right.\longrightarrow\\[0.3cm] \exists c\in(0,1) : f(c)=0

2) x[1,0]x\in[-1,0]



{f(0)=03+3021=1<0f(1)=(1)3+3(1)21=1>0c(1,0):f(c)=0\left\{\begin{array}{l} f(0)=0^3+3\cdot 0^2-1=-1<0\\[0.3cm] f(-1)=(-1)^3+3\cdot(-1)^2-1=1>0 \end{array}\right.\longrightarrow\\[0.3cm] \exists c\in(-1,0) : f(c)=0

3) x[3,2]x\in[-3,-2]



{f(3)=(3)3+3(3)21=1<0f(2)=(2)3+3(2)21=3>0c(3,2):f(c)=0\left\{\begin{array}{l} f(-3)=(-3)^3+3\cdot(-3)^2-1=-1<0\\[0.3cm] f(-2)=(-2)^3+3\cdot(-2)^2-1=3>0 \end{array}\right.\longrightarrow\\[0.3cm] \exists c\in(-3,-2) : f(c)=0

Q.E.D.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS