Use the definition of limit to prove that both of the sequences { 1 √ n √ } and {(−1)n n } converges to 0.
Let "a_{n}=\\frac{1}{\\sqrt{n}}" . Let "\\epsilon>0" is given. Then there exist some N>0 satisfying "N>\\frac{1}{\\epsilon^{2}}".( Archimedean property of real numbers)
Therefore "\\forall" "n\\geq N",
"|a_{n}-0|=|\\frac{1}{\\sqrt{n}}|=\\frac{1}{\\sqrt{n}}\\leq \\frac{1}{\\sqrt{N}}<\\epsilon" .
Hence from the definition of limits "a_{n} \\rightarrow 0."
Let "b_{n}= \\frac{(-1)^{n}}{n}." Then "\\forall n\\geq N",
"|b_{n}-0|=|\\frac{(-1)^{n}}{n}|=\\frac{1}{n}\\leq \\frac{1}{N}<\\epsilon" .
Hence from the definition of limits "b_{n}\\rightarrow 0."
Comments
Leave a comment