Let be any positive integer. Use sandwich theorem for sequences to prove that the sequence { 1 n} converges to 0.
We know that "\\{a_n\\}" converges to L, or, "\\lim_{n \\rightarrow \\infty}=L" if "\\forall" "\\epsilon" ">0" "\\exist" N"\\in" "Z^+" such that "\\forall" "n>N",
"|a_n-L|<\\epsilon" .
Consider "|\\dfrac{1}{ n}-0|=|\\dfrac{1}{ n}|=\\dfrac{1}{ n}<\\epsilon"
"\\Rightarrow 1<\\epsilon\\cdot n \\Rightarrow \\dfrac{1}{\\epsilon}< n \\Rightarrow n>\\dfrac{1}{\\epsilon}"
Proof: Let "\\epsilon" ">0" . Choose N">\\dfrac{1}{\\epsilon}" . Then, "\\forall" "n>N", "|\\dfrac{1}{ n}-0|=|\\dfrac{1}{ n}|"
Also, "n>N>\\dfrac{1}{\\epsilon} \\Rightarrow \\epsilon>\\dfrac1 n \\Rightarrow {\\dfrac1n}<\\epsilon \\Rightarrow {\\dfrac1{ n}}<\\epsilon"
Thus, "|\\dfrac{1}{ n}-0|=\\dfrac{1}{ n}<\\epsilon"
Hence, by above statement, "\\{\\dfrac{1}{n}\\}" converges to 0.
Comments
Leave a comment