Prove that : lim n→∞
(2n³+5n)/(4n³+n²) = 1/2
limn→∞2n3+5n4n3+n2=limn→∞2n3(1+52n2)4n3(1+14n)=limn→∞2(1+0)4(1+0)=12\lim_{n\to\infin}\frac{2n^3+5n}{4n^3+n^2}=\lim_{n\to\infin}\frac{2n^3(1+\frac{5}{2n^2})}{4n^3(1+\frac{1}{4n})}= \lim_{n\to\infin}\frac{2(1+0)}{4(1+0)}=\frac{1}{2}limn→∞4n3+n22n3+5n=limn→∞4n3(1+4n1)2n3(1+2n25)=limn→∞4(1+0)2(1+0)=21
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments