Question #158014

Let {an}∞n=1 be a bounded sequence and {bn}∞n=1 be a sequence converges to 0. Prove that the sequence {an · bn}∞n=1 converges to 0.


1
Expert's answer
2021-01-29T11:45:47-0500

Solution: Since {an} is a bounded sequence,there exists a M>0 such thatanM for all nN.Since {bn} converges to zero, given ϵ>0,there exists n0 such that bn<ϵM for all nn0Now anbn=anbn<ϵMM=ϵ for all nn0Hence {an.bn} converges to 0.Solution: ~Since~ \{a_n\} ~ is~ a ~bounded~ sequence, there~ exists~ a ~M>0~ such~ that \\| a_n | \leq M~ for ~all ~n \in N. Since~ \{b_n\} ~converges~ to~ zero,~ given ~\epsilon >0, there~exists~ n_0 ~ such~ that~ \\|b_n| < \frac{\epsilon}{M}~for ~ all~ n \geq n_0 \\Now~ |a_n b_n|=|a_n||b_n| < \frac{\epsilon}{M}M= \epsilon~ for ~ all~ n \geq n_0 \\Hence~ \{a_n.b_n\} ~converges ~to ~0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS