T h e , i n i t i a l , f o r m , f o r , t h e , l i m i t , i s , i n d e t e r m i n a t e , ∞ − ∞ S o , u s e , t h e , c o n j u g a t e . ( x 2 + x − x ) = x 2 + x − x 1 x 2 + x + x x 2 + x + x = x 2 + x − x 2 x 2 + x + x = x x 2 + x + x lim x → ∞ x x 2 + x + x h a s , i n d e t e r m i n a t e , f o r m , ∞ ∞ , b u t , w e , c a n , f a c t o r , a n d , r e d u c e . W e , k n o w , t h a t , x 2 = ∣ x ∣ , s o , f o r , p o s i t i v e , x ( w h i c h , i s , a l l , w e , a r e , c o n c e r n e d , a b o u t , f o r , a , l i m i t , a s , x , i n c r e a s e s , w i t h o u t , b o u n d , ) w e , h a v e , x x 2 + x + x = x x 2 1 + 1 x + x x ≠ 0 ) ( f o r , a l l The, initial, form, for, the, limit, is, indeterminate,
\infty-\infty
So, use, the, conjugate.
\begin{array}{l}
\left(\sqrt{x^{2}+x}-x\right)=\frac{\sqrt{x^{2}+x}-x}{1} \\
\frac{\sqrt{x^{2}+x}+x}{\sqrt{x^{2}+x}+x} \\
=\frac{x^{2}+x-x^{2}}{\sqrt{x^{2}+x}+x} \\
=\frac{x}{\sqrt{x^{2}+x}+x}
\end{array}
\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+x}+x} has, indeterminate, form,
\frac{\infty}{\infty}, but, we, can, factor, and, reduce.
We, know, that, \sqrt{x^{2}}=|x|, so, for, positive, x
(which, is, all, we, are, concerned, about, for, a, limit, as, x, increases, without, bound,) we, have,
\begin{array}{l}
\frac{x}{\sqrt{x^{2}+x}+x}=\frac{x}{\sqrt{x^{2}} \sqrt{1+\frac{1}{x}+x}} \\
x \neq 0)
\end{array}
(for, all T h e , ini t ia l , f or m , f or , t h e , l imi t , i s , in d e t er mina t e , ∞ − ∞ S o , u se , t h e , co nj ug a t e . ( x 2 + x − x ) = 1 x 2 + x − x x 2 + x + x x 2 + x + x = x 2 + x + x x 2 + x − x 2 = x 2 + x + x x lim x → ∞ x 2 + x + x x ha s , in d e t er mina t e , f or m , ∞ ∞ , b u t , w e , c an , f a c t or , an d , re d u ce . W e , kn o w , t ha t , x 2 = ∣ x ∣ , so , f or , p os i t i v e , x ( w hi c h , i s , a ll , w e , a re , co n cer n e d , ab o u t , f or , a , l imi t , a s , x , in cre a ses , w i t h o u t , b o u n d , ) w e , ha v e , x 2 + x + x x = x 2 1 + x 1 + x x x = 0 ) ( f or , a ll = x x 1 + 1 x + x x > 0 ) = x x ( 1 + 1 x + 1 ) = 1 1 + 1 x + 1 lim x → ∞ 1 1 + 1 x + 1 = 1 1 + 1 = 1 2 =\frac{x}{x \sqrt{1+\frac{1}{x}}+x}
x>0)
=\frac{x}{x\left(\sqrt{\left.1+\frac{1}{x}+1\right)}\right.}
=\frac{1}{\sqrt{1+\frac{1}{x}}+1}
\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{x}}+1}=\frac{1}{\sqrt{1}+1}=\frac{1}{2} = x 1 + x 1 + x x x > 0 ) = x ( 1 + x 1 + 1 ) x = 1 + x 1 + 1 1 lim x → ∞ 1 + x 1 + 1 1 = 1 + 1 1 = 2 1
Comments