Determine the limit when x goes to infinity sqrt(x^(2)+x)-x if it exists.
"The, initial, form, for, the, limit, is, indeterminate,\n\\infty-\\infty\nSo, use, the, conjugate.\n\\begin{array}{l}\n\\left(\\sqrt{x^{2}+x}-x\\right)=\\frac{\\sqrt{x^{2}+x}-x}{1} \\\\\n\\frac{\\sqrt{x^{2}+x}+x}{\\sqrt{x^{2}+x}+x} \\\\\n=\\frac{x^{2}+x-x^{2}}{\\sqrt{x^{2}+x}+x} \\\\\n=\\frac{x}{\\sqrt{x^{2}+x}+x}\n\\end{array}\n\\lim _{x \\rightarrow \\infty} \\frac{x}{\\sqrt{x^{2}+x}+x} has, indeterminate, form,\n\\frac{\\infty}{\\infty}, but, we, can, factor, and, reduce.\nWe, know, that, \\sqrt{x^{2}}=|x|, so, for, positive, x\n(which, is, all, we, are, concerned, about, for, a, limit, as, x, increases, without, bound,) we, have,\n\\begin{array}{l}\n\\frac{x}{\\sqrt{x^{2}+x}+x}=\\frac{x}{\\sqrt{x^{2}} \\sqrt{1+\\frac{1}{x}+x}} \\\\\nx \\neq 0)\n\\end{array}\n(for, all""=\\frac{x}{x \\sqrt{1+\\frac{1}{x}}+x}\nx>0)\n=\\frac{x}{x\\left(\\sqrt{\\left.1+\\frac{1}{x}+1\\right)}\\right.}\n=\\frac{1}{\\sqrt{1+\\frac{1}{x}}+1}\n\\lim _{x \\rightarrow \\infty} \\frac{1}{\\sqrt{1+\\frac{1}{x}}+1}=\\frac{1}{\\sqrt{1}+1}=\\frac{1}{2}"
Comments
Leave a comment