"r=\\frac{1}{2-\\sin{x}}" (1)
"r^2\\frac{dx}{dt}=4" (2)
(i)
"r\\frac{dx}{dt}=\\frac{4}{r}=4(2-\\sin{x})"
(ii)
"\\frac{dr}{dt}=\\frac{dr}{dx}\\frac{dx}{dt}="
"=\\frac{(-1)(-\\cos{x})}{(2-\\sin{x})^2}*4(2-\\sin{x})^2=4\\cos{x}"
"-1\\leqslant-\\sin{x}\\leqslant1"
"1\\leqslant2-\\sin{x}\\leqslant3"
"1\\geqslant\\frac{1}{2-\\sin{x}}\\geqslant\\frac{1}{3}"
"\\frac{1}{3}\\leqslant r \\leqslant 1"
(iii)
"v - speed(velocity)"
"v=\\sqrt{v_r^2+v_x^2}=\\sqrt{(\\frac{dr}{dt})^2+(r\\frac{dx}{dt})^2}="
"=\\sqrt{16\\cos^2{x}+16(2-\\sin{x})^2}="
"=\\sqrt{16+16*4-64\\sin{x}}=\\sqrt{80-64\\sin{x}}"
"v(x=0)=\\sqrt{80}=4\\sqrt{5}"
(iv)
"a- acceleration"
"a_x=r(\\frac{d^2x}{dt^2})^2+2\\frac{dr}{dt}\\frac{dx}{dt}="
"=\\frac{1}{2-\\sin{x}}\\frac{d}{dt}(4(2-\\sin{x})^2)+2*4\\cos{x}*4(2-\\sin{x})^2="
"=\\frac{4*2(2-\\sin{x})}{2-\\sin{x}}(-\\cos{x})\\frac{dx}{dt}+32\\cos{x}(2-\\sin{x})^2="
"=(-8)\\cos{x}*4(2-\\sin{x})^2+32\\cos{x}(2-\\sin{x})^2=0"
"a_r=\\frac{d^2r}{dt^2}-r(\\frac{dx}{dt})^2="
"=\\frac{d}{dt}(4\\cos{x})-\\frac{1}{2-\\sin{x}}(4(2-\\sin{x})^2)^2="
"=-4\\sin{x}\\frac{dx}{dt}-16(2-\\sin{x})^3="
"=-4\\sin{x}*4(2-\\sin{x})^2-16(2-\\sin{x})^3="
"=-16(2-\\sin{x})^2(\\sin{x}+2-\\sin{x})="
"=-32(2-\\sin{x})^2"
"F=ma" , so the force acting on P is directed towards the pole
Comments
Leave a comment