Question #155784

Limit x approach infinity x[ ( 1 + a/x )raise to power of 1+1/x - x raise to power of -1/x ( x+ a ) ]



1
Expert's answer
2021-01-18T06:57:31-0500

Here we have to solve limx(1+ax)x\lim\limits_{x\to\infin}(1+\frac{a}{x})^x


Let us assume

y=(1+ax)xy=(1+\frac{a}{x})^x

Taking natural logarithm on both sides we get,



ln(y)=ln[(1+ax)x]ln(y)=xln(1+ax)\Rightarrow\ln(y)=\ln[(1+\frac{a}{x})^x]\\ \Rightarrow \ln(y)=x\ln(1+\frac{a}{x})

Now, taking limx\lim\limits_{x\to\infin} on both sides we have,



limxln(y)=limxxln(1+ax)\Rightarrow \lim\limits_{x\to\infin}\ln(y)=\lim\limits_{x\to\infin}x\ln(1+\frac{a}{x})\\limxln(y)=limxln(1+ax)1x\Rightarrow\lim\limits_{x\to\infin}\ln(y)=\lim\limits_{x\to\infin}\frac{ln(1+\frac{a}{x})}{\frac{1}{x}}

Using L'Hospital's rule to solve the RHS of the equation, as the limit is in the form of 00\frac{0}{0} we have,



limxln(y)=limx11+ax1x2(ax2)\Rightarrow\lim\limits_{x\to\infin}\ln(y)=\lim\limits_{x\to\infin}\frac{\frac{1}{1+\frac{a}{x}}}{\frac{-1}{x^2}}(\frac{-a}{x^2})

limxln(y)=a\Rightarrow\lim\limits_{x\to\infin}\ln(y)=a\\

Now, as we can interchange ln\ln and lim\lim we get,



lnlimx(y)=alimxy=ealimx(1+ax)x=ea\Rightarrow\ln\lim\limits_{x\to\infin}(y)=a\\ \Rightarrow\lim\limits_{x\to\infin}y=e^a\\ \Rightarrow\lim\limits_{x\to\infin}(1+\frac{a}{x})^x=e^a


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS