Answer to Question #155703 in Calculus for Pia

Question #155703

Find dy/dx and d²y/dx² without eliminating the parameter.


a.) x= acosh(t) , y= bsinh(t)

b.) x= acos(t) , y= bsin(t)


1
Expert's answer
2021-01-17T17:15:09-0500

To find dydx\frac{dy}{dx} , d2ydx2\frac{d^2y}{dx^2} will be used formula dydx=dydt/dxdt\frac{dy}{dx}=\frac{dy}{dt}/\frac{dx}{dt} . Such formula are takeen the standard chain rule 

dydt=dydxdxdt\frac{dy}{dt} =\frac{ dy}{dx }\frac{ dx}{dt}

a) Let's take derivatives of the xx and yy with respect to the independent variable tt

x=acoshtx=a\cosh{t}

y=bsinhty=b\sinh{t}

dxdt=asinht\frac{dx}{dt}=a\sinh{t}

dydt=bcosht\frac{dy}{dt}=b\cosh{t}

Substitute derivatives into formula dydx=dydt/dxdt\frac{dy}{dx}=\frac{dy}{dt}/\frac{dx}{dt} :

dydx=bcoshtasinht=bacotht\frac{dy}{dx}=\frac{b\cosh{t}}{a\sinh{t}}=\frac{b}{a}\coth{t}

To find d2ydx2\frac{d^2y}{dx^2} , firstly take the derivative of the function for dydx\frac{dy}{dx} (as yy' ) :

y=ddt(dydx)=ba(1coth2t)=basinh2ty'=\frac{d}{dt}(\frac{dy}{dx})=\frac{b}{a}(1-\coth^2{t})=-\frac{b}{a}\sinh^{-2}{t}

d2ydx2=dydxdt=ba(1coth2t)/(asinht)=ba2sinh3t\frac{d^2y}{dx^2}=\frac{dy'}{\frac{dx}{dt}}= \frac{b}{a}(1-\coth^2{t})/(a\sinh{t})=-\frac{b}{a^2}\sinh^3{t} ​

b) Let's take derivatives of the xx and yy with respect to the independent variable tt

x=acostx=a\cos{t}

y=bsinty=b\sin{t}

dxdt=asint\frac{dx}{dt}=-a\sin{t}

dydt=bcost\frac{dy}{dt}=b\cos{t}

Substitute derivatives into formula dydx=dydt/dxdt\frac{dy}{dx}=\frac{dy}{dt}/\frac{dx}{dt} :

dydx=bcostasint=bacott\frac{dy}{dx}=-\frac{b\cos{t}}{a\sin{t}}=-\frac{b}{a}\cot{t}

To find d2ydx2\frac{d^2y}{dx^2} , firstly take the derivative of the function for dydx\frac{dy}{dx} :

y=ddt(dydx)=bacsc2ty'=\frac{d}{dt}(\frac{dy}{dx})=-\frac{b}{a}\csc^2{t}

d2ydx2=dydxdt=bacsc2t/(asint)=ba2sin3t\frac{d^2y}{dx^2}=\frac{dy'}{\frac{dx}{dt}}= -\frac{b}{a}\csc^2{t}/(-a\sin{t})=\frac{b}{a^2}\sin^3{t} ​



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment