Find dy/dx and d²y/dx² without eliminating the parameter.
a.) x= acosh(t) , y= bsinh(t)
b.) x= acos(t) , y= bsin(t)
To find "\\frac{dy}{dx}" , "\\frac{d^2y}{dx^2}" will be used formula "\\frac{dy}{dx}=\\frac{dy}{dt}\/\\frac{dx}{dt}" . Such formula are takeen the standard chain rule
"\\frac{dy}{dt} =\\frac{ dy}{dx }\\frac{ dx}{dt}"
a) Let's take derivatives of the "x" and "y" with respect to the independent variable "t"
"x=a\\cosh{t}"
"y=b\\sinh{t}"
"\\frac{dx}{dt}=a\\sinh{t}"
"\\frac{dy}{dt}=b\\cosh{t}"
Substitute derivatives into formula "\\frac{dy}{dx}=\\frac{dy}{dt}\/\\frac{dx}{dt}" :
"\\frac{dy}{dx}=\\frac{b\\cosh{t}}{a\\sinh{t}}=\\frac{b}{a}\\coth{t}"
To find "\\frac{d^2y}{dx^2}" , firstly take the derivative of the function for "\\frac{dy}{dx}" (as "y'" ) :
"y'=\\frac{d}{dt}(\\frac{dy}{dx})=\\frac{b}{a}(1-\\coth^2{t})=-\\frac{b}{a}\\sinh^{-2}{t}"
"\\frac{d^2y}{dx^2}=\\frac{dy'}{\\frac{dx}{dt}}= \\frac{b}{a}(1-\\coth^2{t})\/(a\\sinh{t})=-\\frac{b}{a^2}\\sinh^3{t}\n\u200b"
b) Let's take derivatives of the "x" and "y" with respect to the independent variable "t"
"x=a\\cos{t}"
"y=b\\sin{t}"
"\\frac{dx}{dt}=-a\\sin{t}"
"\\frac{dy}{dt}=b\\cos{t}"
Substitute derivatives into formula "\\frac{dy}{dx}=\\frac{dy}{dt}\/\\frac{dx}{dt}" :
"\\frac{dy}{dx}=-\\frac{b\\cos{t}}{a\\sin{t}}=-\\frac{b}{a}\\cot{t}"
To find "\\frac{d^2y}{dx^2}" , firstly take the derivative of the function for "\\frac{dy}{dx}" :
"y'=\\frac{d}{dt}(\\frac{dy}{dx})=-\\frac{b}{a}\\csc^2{t}"
"\\frac{d^2y}{dx^2}=\\frac{dy'}{\\frac{dx}{dt}}= -\\frac{b}{a}\\csc^2{t}\/(-a\\sin{t})=\\frac{b}{a^2}\\sin^3{t}\n\u200b"
Comments
Leave a comment