Prove that the Fibonacci sequence {fn}∞n=1 defined in Lecture 7-8 has the following formula: 1+√ fn+1 := 2 n 5 √ n 5 −1−√ 2 5 (n ≥ 0)
1
Expert's answer
2021-01-21T02:51:17-0500
Pn:F(n)=51⎣⎡(21+5)n+1−(21−5)n+1⎦⎤ is true for n∈NFor n=0,F(0)=51×225=1which follows that P0 is true.Let Px is true for ∀x∋x≤k∈N∴F(k)=51⎣⎡(21+5)k+1−(21−5)k+1⎦⎤and, F(k−1)=51⎣⎡(21+5)k−(21−5)k⎦⎤Now, F(k+1)=F(k)+F(k−1)So,F(k)+F(k−1)==51⎣⎡(21+5)k+1−(21−5)k+1⎦⎤+51⎣⎡(21+5)k−(21−5)k⎦⎤=51⎣⎡(21+5)k(1+21+5)−(21−5)k(1+21−5)⎦⎤=51⎣⎡(21+5)k(21+5)2−(21−5)k(21−5)2⎦⎤=51⎣⎡(21+5)k+2−(21−5)k+2⎦⎤=F(k+1).
∴Pk+1 is true.So, by theorem of Mathematical Induction, Pn is true ∀n∈N
Comments