Prove that the Fibonacci sequence {fn}∞n=1 defined in Lecture 7-8 has the following formula: 1+√ fn+1 := 2 n 5 √ n 5 −1−√ 2 5 (n ≥ 0)
"P_n:\nF(n)=\\dfrac{1}{\\sqrt5}\\left[\\left(\\dfrac{1+\\sqrt5}{2}\\right)^{n+1}-\\left(\\dfrac{1-\\sqrt5}{2}\\right)^{n+1}\\right] \\text{ is true for }n\\in \\mathbb{N}\\\\\\;\\\\\n\\text{For }n=0, \\; F(0)=\\dfrac{1}{\\sqrt5}\\times \\dfrac{2\\sqrt5}{2}=1~~~~~~\n\\\\\\text{which follows that }P_0 \\text{ is true.}\\\\\n\\text{Let $P_x$ is true for $\\forall x\\ni x\\leq k\\in \\N$}\\\\\\;\\\\\n\\therefore F(k)=\\dfrac{1}{\\sqrt5}\\left[\\left(\\dfrac{1+\\sqrt5}{2}\\right)^{k+1}-\\left(\\dfrac{1-\\sqrt5}{2}\\right)^{k+1}\\right] \n\\\\\\;\\\\\n\\text{and, $F(k-1)=\\dfrac{1}{\\sqrt5}\\left[\\left(\\dfrac{1+\\sqrt5}{2}\\right)^{k}-\\left(\\dfrac{1-\\sqrt5}{2}\\right)^{k}\\right] $}\\\\~\\\\\n\\text{Now, $F(k+1)=F(k)+F(k-1)$}\\\\\n\\text{So,}\\\\\nF(k)+F(k-1)=\\\\\n= \\dfrac{1}{\\sqrt5}\\left[\\left(\\dfrac{1+\\sqrt5}{2}\\right)^{k+1}-\\left(\\dfrac{1-\\sqrt5}{2}\\right)^{k+1}\\right]+\n\\dfrac{1}{\\sqrt5}\\left[\\left(\\dfrac{1+\\sqrt5}{2}\\right)^{k}-\\left(\\dfrac{1-\\sqrt5}{2}\\right)^{k}\\right]\\\\\n\\;\\\\=\\dfrac{1}{\\sqrt5}\\left[\\left(\\dfrac{1+\\sqrt5}{2}\\right)^{k}\\left(1+\\dfrac{1+\\sqrt5}{2}\\right)-\\left(\\dfrac{1-\\sqrt5}{2}\\right)^{k}\\left(1+\\dfrac{1-\\sqrt5}{2}\\right)\\right]\n\\\\\\;\\\\\n=\\dfrac{1}{\\sqrt5}\\left[\\left(\\dfrac{1+\\sqrt5}{2}\\right)^{k}\\left(\\dfrac{1+\\sqrt5}{2}\\right)^2-\\left(\\dfrac{1-\\sqrt5}{2}\\right)^{k}\\left(\\dfrac{1-\\sqrt5}{2}\\right)^2\\right]\\\\\\;\\\\\n=\\dfrac{1}{\\sqrt5}\\left[\\left(\\dfrac{1+\\sqrt5}{2}\\right)^{k+2}-\\left(\\dfrac{1-\\sqrt5}{2}\\right)^{k+2}\\right]=F(k+1)."
"\\\\\\;\\\\\\text{$\\therefore P_{k+1}$ is true.\\\\\n}\\\\\n\\text{So, by theorem of Mathematical Induction, $P_n \\text{ is true $\\forall n\\in \\N$}$}"
Comments
Leave a comment