"{\\int_e}^{e^2}\\frac{1}{\\sqrt{({x+\\frac{1}{2}})^2+(\\frac{\\sqrt{15}}{2})^2}}dx\\\\\n\\text{Using the standard integral of tan, we have}\\\\\n\\frac{2}{\\sqrt{15}}tan^{-1}(\\frac{2x+1}{\\sqrt{15}})|_e^{e^2}\\\\\n\\frac{2}{\\sqrt{15}}[tan^{-1}(\\frac{2e^2+1}{\\sqrt{15}})-tan^{-1}(\\frac{2e+1}{\\sqrt{15}})]\\\\"
Comments
Leave a comment