Question #155796
Find the integral of: 1 / sqrt(4 + x + x^2) dx with limits of range increasing from e to e^2
1
Expert's answer
2021-01-26T11:54:28-0500

ee21(x+12)2+(152)2dxUsing the standard integral of tan, we have215tan1(2x+115)ee2215[tan1(2e2+115)tan1(2e+115)]{\int_e}^{e^2}\frac{1}{\sqrt{({x+\frac{1}{2}})^2+(\frac{\sqrt{15}}{2})^2}}dx\\ \text{Using the standard integral of tan, we have}\\ \frac{2}{\sqrt{15}}tan^{-1}(\frac{2x+1}{\sqrt{15}})|_e^{e^2}\\ \frac{2}{\sqrt{15}}[tan^{-1}(\frac{2e^2+1}{\sqrt{15}})-tan^{-1}(\frac{2e+1}{\sqrt{15}})]\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS