Answer to Question #155793 in Calculus for Yolande

Question #155793
Find the integral of: sec^n (x)dx
1
Expert's answer
2021-01-21T20:07:43-0500

In=secnxdx(1)I_{n}=\int sec^nxdx --------(1)

In=secn2x.sec2xdxI_{n}=\int sec^{n-2}x.sec^2xdx

Integration by using parts where as secn2xdx\int sec^{n-2}xdx is IstI_{st} and sec2xdx\int sec^{2}xdx is IIndII_{nd} part


In=secn2xsec2xdx[d/dx(secn2).sec2xdx]dxI_{n}=sec^{n-2}x\int sec^2xdx-\int[d/dx(sec^{n-2}).\int sec^2xdx]dx

Since sec2xdx=tanx\int sec^2xdx = tanx and where as d/dx(secn2x=(n2)secn3xsecxtanxd/dx(sec^{n-2}x=(n-2)sec^{n-3}xsecxtanx


In=secn2x.tanx(n2)secn3x.secx.tanx.tanxdxI_{n}=sec^{n-2}x.tanx-\int(n-2)sec^{n-3}x.secx.tanx.tanxdx

=secn2x.tanx(n2)secn2x.tan2xdx=sec^{n-2}x.tanx-(n-2)\int sec^{n-2}x.tan^2xdx

=secn2x.tanx(n2)secn2x(sec2x1)dx=sec^{n-2}x.tanx-(n-2)\int sec^{n-2}x(sec^2x-1)dx

=secn2x.tanx(n2)[secnxdxsecn2xdx=sec^{n-2}x.tanx-(n-2)[\int sec^{n}xdx-\int sec^{n-2}xdx

=secn2x.tanx(n2)[secnxdxsecn2xdx]=sec^{n-2}x.tanx-(n-2)[\int sec^{n}xdx-\int sec^{n-2}xdx]

=secn2x.tanx(n2)[InI(n2)]=sec^{n-2}x.tanx-(n-2)[I_{n}-I_{(n-2)}]

From equation (1) In=secnxdxI_{n}=\int sec^nxdx therefore In2=secn2xdxI_{n-2}=\int sec^{n-2}xdx


In=secn2x.tanx(n2)In+(n2)I(n2)I_{n}=sec^{n-2}x.tanx-(n-2)I_{n}+(n-2)I_{(n-2)}

In+(n2)In=secn2x.tanx+(n2)In2I_{n}+(n-2)I_{n}=sec^{n-2}x.tanx+(n-2)I_{n-2}

(n1)In=secn2x.tanx+(n2)In2(n-1)I_{n}=sec^{n-2}x.tanx+(n-2)I_{n-2} In=[secn2x.tanx/(n1)]+[(n2)In2/(n1)]I_{n}=[sec^{n-2}x.tanx/(n-1)]+[(n-2)I_{n-2}/(n-1)]

This is the reduction formula of secn2xdx\int sec^{n-2}xdx

Answer: In=[secn2x.tanx/(n1)]+[(n2)In2/(n1)]I_{n}=[sec^{n-2}x.tanx/(n-1)]+[(n-2)I_{n-2}/(n-1)]



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment