In=∫secnxdx−−−−−−−−(1)
In=∫secn−2x.sec2xdx
Integration by using parts where as ∫secn−2xdx is Ist and ∫sec2xdx is IInd part
In=secn−2x∫sec2xdx−∫[d/dx(secn−2).∫sec2xdx]dx
Since ∫sec2xdx=tanx and where as d/dx(secn−2x=(n−2)secn−3xsecxtanx
In=secn−2x.tanx−∫(n−2)secn−3x.secx.tanx.tanxdx
=secn−2x.tanx−(n−2)∫secn−2x.tan2xdx
=secn−2x.tanx−(n−2)∫secn−2x(sec2x−1)dx
=secn−2x.tanx−(n−2)[∫secnxdx−∫secn−2xdx
=secn−2x.tanx−(n−2)[∫secnxdx−∫secn−2xdx]
=secn−2x.tanx−(n−2)[In−I(n−2)]
From equation (1) In=∫secnxdx therefore In−2=∫secn−2xdx
In=secn−2x.tanx−(n−2)In+(n−2)I(n−2)
In+(n−2)In=secn−2x.tanx+(n−2)In−2
(n−1)In=secn−2x.tanx+(n−2)In−2 In=[secn−2x.tanx/(n−1)]+[(n−2)In−2/(n−1)]
This is the reduction formula of ∫secn−2xdx
Answer: In=[secn−2x.tanx/(n−1)]+[(n−2)In−2/(n−1)]
Comments
Leave a comment