"I_{n}=\\int sec^nxdx --------(1)"
"I_{n}=\\int sec^{n-2}x.sec^2xdx"
Integration by using parts where as "\\int sec^{n-2}xdx" is "I_{st}" and "\\int sec^{2}xdx" is "II_{nd}" part
"I_{n}=sec^{n-2}x\\int sec^2xdx-\\int[d\/dx(sec^{n-2}).\\int sec^2xdx]dx"
Since "\\int sec^2xdx = tanx" and where as "d\/dx(sec^{n-2}x=(n-2)sec^{n-3}xsecxtanx"
"I_{n}=sec^{n-2}x.tanx-\\int(n-2)sec^{n-3}x.secx.tanx.tanxdx"
"=sec^{n-2}x.tanx-(n-2)\\int sec^{n-2}x.tan^2xdx"
"=sec^{n-2}x.tanx-(n-2)\\int sec^{n-2}x(sec^2x-1)dx"
"=sec^{n-2}x.tanx-(n-2)[\\int sec^{n}xdx-\\int sec^{n-2}xdx"
"=sec^{n-2}x.tanx-(n-2)[\\int sec^{n}xdx-\\int sec^{n-2}xdx]"
"=sec^{n-2}x.tanx-(n-2)[I_{n}-I_{(n-2)}]"
From equation (1) "I_{n}=\\int sec^nxdx" therefore "I_{n-2}=\\int sec^{n-2}xdx"
"I_{n}=sec^{n-2}x.tanx-(n-2)I_{n}+(n-2)I_{(n-2)}"
"I_{n}+(n-2)I_{n}=sec^{n-2}x.tanx+(n-2)I_{n-2}"
"(n-1)I_{n}=sec^{n-2}x.tanx+(n-2)I_{n-2}" "I_{n}=[sec^{n-2}x.tanx\/(n-1)]+[(n-2)I_{n-2}\/(n-1)]"
This is the reduction formula of "\\int sec^{n-2}xdx"
Answer: "I_{n}=[sec^{n-2}x.tanx\/(n-1)]+[(n-2)I_{n-2}\/(n-1)]"
Comments
Leave a comment