Set I = ∫ x ( 4 x 2 + 6 x ) d x I = \int \frac {x}{\sqrt{(4x^{2} +6x)}} dx I = ∫ ( 4 x 2 + 6 x ) x d x
Completing the square in the denominator, we have that
I = ∫ 2 x ( 4 x + 3 ) 2 − 9 d x I = \int \frac {2x}{\sqrt{(4x + 3)^{2} -9}} dx I = ∫ ( 4 x + 3 ) 2 − 9 2 x d x
Applying the substitution 4 x + 3 = 3 c o s h θ 4x +3 = 3 cosh \theta 4 x + 3 = 3 cos h θ
We have that
I = ∫ 2 4 ( 3 c o s h θ − 3 9 c o s h 2 θ − 9 ) ( 3 4 s i n h θ d θ ) I = \int \frac{2}{4} (\frac{3cosh\theta - 3}{\sqrt{9cosh^{2}\theta - 9}})(\frac{3}{4}sinh\theta d\theta) I = ∫ 4 2 ( 9 cos h 2 θ − 9 3 cos h θ − 3 ) ( 4 3 s inh θ d θ )
By simplifying, we have
I = 3 8 ∫ ( c o s h θ − 1 ) d θ I = \frac{3}{8} \int (cosh\theta -1) d\theta I = 8 3 ∫ ( cos h θ − 1 ) d θ
Integrating term by term
I = 3 8 ( s i n h θ − θ ) + C I = \frac{3}{8}(sinh\theta - \theta) + C I = 8 3 ( s inh θ − θ ) + C
Reverse the substitution
I = 3 8 [ ( 1 3 ) ( 4 x + 3 ) 2 − 9 − cosh − 1 ( 4 x + 3 3 ) ] + C I = \frac{3}{8}[(\frac{1}{3})\sqrt{(4x+3)^2-9} - \cosh^{-1}(\frac{4x + 3}{3})] + C I = 8 3 [( 3 1 ) ( 4 x + 3 ) 2 − 9 − cosh − 1 ( 3 4 x + 3 )] + C
Applying the upper and lower limits to the value of the definite integral
∫ − 1 2 e 1 2 e x ( 4 x 2 + 6 x ) d x \int_ {\frac{-1}{2e}}^{\frac{1}{2e}} \frac {x}{\sqrt{(4x^{2} +6x)}} dx ∫ 2 e − 1 2 e 1 ( 4 x 2 + 6 x ) x d x is approximately 0.3504 + 0.7257 i 0.3504 + 0.7257i 0.3504 + 0.7257 i
The reason why we have a complex solution is because of the lower limit of the integration.
Comments